98%
921
2 minutes
20
Exposure to ambient PM pollution has been linked to multiple adverse health effects. Additional effects have been identified in the literature and there is a need to understand its potential role in high prevalence diseases. In response to recent indications of PM as a risk factor for dementia, we examine the evidence by systematically reviewing the epidemiologic literature, in relation to exposure from ambient air pollution, household air pollution, secondhand smoke, and active smoking. We develop preliminary exposure-response functions, estimate the uncertainty, and discuss sensitivities and model selection. We estimate the likely impact to be 2.1 M (1.4 M, 2.5 M; 5%-95% confidence) global incident dementia cases and 0.6 M (0.4 M, 0.8 M) deaths attributable to ambient PM pollution in 2015. This implies a combined toll from morbidity and mortality of dementia of 7.3 M (5.0 M, 9.1 M) lost disability-adjusted life years. China, Japan, India, and the United States had the highest estimated total burden, and the per capita burden was highest in developed countries with large elderly populations. Compared to 2000, most countries in Europe, the Americas, and Southern Africa reduced the burden in 2015, while other regions had a net increase. Based on a recent systematic review of cost of illness studies for dementia, our estimates imply economic costs of US$ 26 billion worldwide in 2015. Based on this estimation, ambient PM pollution may be responsible for 15% of premature deaths and 7% of DALYs associated with dementia. Our estimates also indicate substantial uncertainty in this relationship, and future epidemiological studies at high exposure levels are especially needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8143277 | PMC |
http://dx.doi.org/10.1029/2020GH000356 | DOI Listing |
JAMA Neurol
September 2025
Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia.
Importance: Exposure to fine particulate matter air pollution (PM2.5) may increase risk for dementia. It is unknown whether this association is mediated by dementia-related neuropathologic change found at autopsy.
View Article and Find Full Text PDFEnviron Res
September 2025
Department of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.
While studies have examined associations between air pollution and subjective long COVID outcomes such as fatigue and symptoms, no studies have focused on objective lung health measures. This study aimed to assess the impact of air pollution, examined through different exposure methods (exposures assigned via geospatial model, versus residential and personal measurements) on pulmonary function and radiological abnormalities in long COVID patients. We recruited 95 patients who attended a hospital outpatient clinic 3-6 months post-infection, during which pulmonary function was assessed via spirometry (FEV1,FVC,FEV1/FVC ratio) and diffusion capacity for carbon monoxide (DLCO), along with a chest CT.
View Article and Find Full Text PDFMar Pollut Bull
September 2025
Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
Boat noise has been shown to distract and cause harm to many marine organisms. Most of the study effort has focused on fish & marine mammals, even though invertebrates represent over 92 % of all marine life. The few studies conducted on invertebrates have demonstrated clear negative effects of anthropogenic noise pollution.
View Article and Find Full Text PDFJ Hazard Mater
August 2025
Department of Environmental Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea; Interdisciplinary Program in Earth Environmental System Science & Engineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea; Gangwon particle pollution res
This study evaluates the oxidative potential (OP) of PM and its chemical drivers across three contrasting environments in South Korea: a residential area, a cement factory, and a charcoal kiln facility. Mass-normalized OP (OPm, reflecting intrinsic particle reactivity) ranged from 9.5 to 13.
View Article and Find Full Text PDFWater Res
August 2025
Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-ro, Mohyeon-eup, Cheoin-gu, Yongin-si 17035, South Korea. Electronic address:
The application of metabolomics to the water quality monitoring system, biological early warning system (BEWS), has been proposed; however, its development has not been attempted due to challenges such as high inter-individual variability and invasive sampling requirements in metabolomics applications. In this study, we employed an extracellular metabolomics (exo-metabolomics) approach using Daphnia magna to overcome these limitations and evaluate its utility in field river water conditions. From BEWS flow-through chambers, we collected exo-metabolites under ambient, copper exposure (0-80 μg/L), and post-exposure conditions.
View Article and Find Full Text PDF