98%
921
2 minutes
20
Background: Chest radiography value as a screening tool in those exposed to pulmonary tuberculosis (TB) is reduced by its lower sensitivity to detect small intrapulmonary lesions.
Purpose: To evaluate the efficacy of digital tomosynthesis (DTS) screening of individuals that had contacted persons with active TB using low-dose computed tomography (CT) as the reference standard methods.
Material And Methods: This retrospective, community-based screening study of 90 adults who had been in close contact with a TB case was undertaken at our institution. All individuals underwent clinical evaluation, digital radiography (DR), DTS, and low-dose chest CT. Observers assessed and classified DR and DTS images using CT as the reference-standard method. Based on clinical and imaging findings, TB status was classified as normal, latent, minimal, subclinical, and active. Diagnostic performances of DTS and DR for the interpretation of correct diagnosis were calculated.
Results: The estimated effective doses for DR, DTS, and low-dose CT were 0.01 mSv, 0.1 mSv, and 0.33 mSv, respectively. TB statuses of the 90 individuals were as follows: 62 latent (68.9%); two subclinical (2.2%); and one minimal (1.1%). The sensitivities, specificities, and accuracies of DTS and DR in the interpretation of correct diagnosis were 75.8%, 100%, 91.1% and 48.5%, 96.5%, 78.9%, respectively.
Conclusion: DTS appears to be superior to DR for the detection of lung lesions in individuals with TB contacts. DTS can offer a reasonable option for TB contact investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/02841851211022498 | DOI Listing |
Med Phys
September 2025
Department of Radiology, Stony Brook University, New York, USA.
Background: In contrast-enhanced digital mammography (CEDM) and contrast-enhanced digital breast tomosynthesis (CEDBT), low-energy (LE) and high-energy (HE) images are acquired after injection of iodine contrast agent. Weighted subtraction is then applied to generate dual-energy (DE) images, where normal breast tissues are suppressed, leaving iodinated objects enhanced. Currently, clinical systems employ a dual-shot (DS) method, where LE and HE images are acquired with two separate exposures.
View Article and Find Full Text PDFEur J Radiol
August 2025
Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
Purpose: To evaluate whether AI-assisted ipsilateral tissue matching in digital breast tomosynthesis (DBT) reduces localization errors beyond typical tumor boundaries, particularly for non-expert radiologists. The technology category is deep learning.
Materials And Methods: The study consisted of two parts.
Eur J Breast Health
September 2025
University of Miami Hospital, Department of Radiology, Division of Breast Imaging, Miami, USA.
Screening mammography plays a critical role in the early detection of breast cancer. Suspicious breast calcifications on mammography often prompt further diagnostic evaluation due to concern for malignancy, worrying physicians and patients alike. Here, we present a case of a woman in her 70s whose annual screening mammogram with digital breast tomosynthesis demonstrated two new groups of microcalcifications, confirmed after recall with magnification views.
View Article and Find Full Text PDFMed Phys
September 2025
Dept. of Medical Imaging, Radboudumc, Nijmegen, The Netherlands.
Purpose: Cascaded linear models are widely used for the development and optimization of x-ray imaging systems, yet no publicly available Python implementation currently exists. We introduce CASYMIR, a flexible and open-source Python package capable of modeling direct and indirect-conversion x-ray imaging detectors under various acquisition conditions.
Methods: We employed a modular software design with generalized frequency-domain expressions for each process in the detection chain, which can be implemented as serial or parallel blocks.
J Radiol Prot
September 2025
Radiological Physics & Advisory Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, INDIA.
Purpose This foundational study aims to support the development of regional Diagnostic Reference Levels (DRLs) for mammography screening in India by estimating Mean Glandular Dose (MGD) using appropriate breast-equivalent phantoms across Computed Mammography (CR), Digital Mammography (DR), and Digital Breast Tomosynthesis (DBT) systems. Additionally, system-displayed MGD values were compared with calculated MGDs to evaluate their accuracy for routine clinical use. Methods A total of 5,000 mammographic views were collected across CR, DR, and DBT units.
View Article and Find Full Text PDF