98%
921
2 minutes
20
In the present work, chemically modified graphene oxide (GO) was incorporated as a crosslinking agent into thin-film composite (TFC) nanofiltration (NF) membranes for water desalination applications, which were prepared by the interfacial polymerization (IP) method, where the monomers were piperazine (PIP) and trimesoyl chloride (TMC). GO was functionalized with monomer-containing groups to promote covalent interactions with the polymeric film. The composite GO/polyamide (PA) was prepared by incorporating amine and acyl chloride groups into the structure of GO and then adding these chemical modified nanomaterial during IP. The effect of functionalized GO on membrane properties and performance was investigated. Chemical composition and surface morphology of the prepared GO and membranes were analyzed by thermogravimetric analysis (TGA), Raman spectroscopy, FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM). The fabricated composite membranes exhibited a significant increase in permeance (from 1.12 to 1.93 L m h bar) and salt rejection for NaSO (from 95.9 to 98.9%) and NaCl (from 46.2 to 61.7%) at 2000 ppm, when compared to non-modified membranes. The amine- and acyl chloride-functionalized GO showed improved dispersibility in the respective phase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8158488 | PMC |
http://dx.doi.org/10.3390/polym13101637 | DOI Listing |
Adv Mater
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Jinling Clinical Medical College, Nanjing University of Chinese Medicine, 305 East Zhongshan Road, Nanjing 210002, P.R. China.
Research on liposome-composite hydrogel microspheres (LHMs) drug delivery systems, primarily composed of drugs, liposomes, and hydrogels, has garnered growing scientific interest. LHMs exhibit biosafety, modifiability, a wide range of loaded drug categories (water-soluble or fat-soluble), controlled and sustainable drug release capability, and specific cell-targeted performance, which compensate for the shortcomings of conventional drug delivery methods due to the complementary advantages of liposome and hydrogel microspheres. In this review, we systematically analyze the existing literature on LHMs and provide a comprehensive overview of their preparation methods.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8603, Japan.
High-entropy alloys (HEAs) have recently emerged as promising electrocatalysts for complex reactions owing to their tunable electronic structures and diverse, unique binding sites. However, their vast compositional space, in terms of both elemental variety and atomic ratios, presents a major challenge to the rational design of high-performance catalysts, as experimental efforts are often hindered by ambiguous element selection and inefficient trial-and-error methods. In this work, a bottom-up research strategy using machine learning-assisted first-principles calculations was applied to accelerate the design of quinary HEAs toward efficient multielectron transfer reactions.
View Article and Find Full Text PDFNat Commun
September 2025
Department of Civil & Environmental Engineering, University of California, Los Angeles, CA, USA.
In this study, we present a class of thin-film crosslinked (TFX) composite reverse osmosis (RO) membranes that resist physical compaction at ultrahigh pressures (up to 200 bar). Since RO membranes experience compaction at virtually all pressure ranges, the ability to resist compaction has widespread implications for RO membrane technology. The process described herein involves crosslinking a phase inverted porous polyimide (PI) support membrane followed by interfacial polymerization of a polyamide layer, thereby forming a fully thermoset composite membrane structure.
View Article and Find Full Text PDFChemSusChem
September 2025
TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.
Photocatalytic water splitting enables the generation of green hydrogen (H). In this framework, water and sunlight are the sustainable sources. Photocatalyst-loaded hydrogel materials have already shown their potential as a water storage and catalyst host matrix for H production.
View Article and Find Full Text PDF