Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fertility traits measured early in life define the reproductive potential of heifers. Knowledge of genetics and biology can help devise genomic selection methods to improve heifer fertility. In this study, we used ~2400 Brahman cattle to perform GWAS and multi-trait meta-analysis to determine genomic regions associated with heifer fertility. Heifer traits measured were pregnancy at first mating opportunity (PREG1, a binary trait), first conception score (FCS, score 1 to 3) and rebreeding score (REB, score 1 to 3.5). The heritability estimates were 0.17 (0.03) for PREG1, 0.11 (0.05) for FCS and 0.28 (0.05) for REB. The three traits were highly genetically correlated (0.75-0.83) as expected. Meta-analysis was performed using SNP effects estimated for each of the three traits, adjusted for standard error. We identified 1359 significant SNPs (-value < 9.9 × 10 at FDR < 0.0001) in the multi-trait meta-analysis. Genomic regions of 0.5 Mb around each significant SNP from the meta-analysis were annotated to create a list of 2560 positional candidate genes. The most significant SNP was in the vicinity of a genomic region on chromosome 8, encompassing the genes , , , and . The genomic region in humans that contains homologs of these genes is associated with age at puberty in girls. Top significant SNPs pointed to additional fertility-related genes, again within a 0.5 Mb region, including , , , , and Functional pathway enrichment analysis resulted in many positional candidate genes relating to known fertility pathways, including GnRH signaling, estrogen signaling, progesterone mediated oocyte maturation, cAMP signaling, calcium signaling, glutamatergic signaling, focal adhesion, PI3K-AKT signaling and ovarian steroidogenesis pathway. The comparison of results from this study with previous transcriptomics and proteomics studies on puberty of the same cattle breed (Brahman) but in a different population identified 392 genes in common from which some genes--are also part of the above-mentioned pathways. The biological functions of the positional candidate genes and their annotation to known pathways allowed integrating the results into a bigger picture of molecular mechanisms related to puberty in the hypothalamus-pituitary-ovarian axis. A reasonable number of genes, common between previous puberty studies and this study on early reproductive traits, corroborates the proposed molecular mechanisms. This study identified the polymorphism associated with early reproductive traits, and candidate genes that provided a visualization of the proposed mechanisms, coordinating the hypothalamic, pituitary, and ovarian functions for reproductive performance in Brahman cattle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157873PMC
http://dx.doi.org/10.3390/genes12050768DOI Listing

Publication Analysis

Top Keywords

candidate genes
16
positional candidate
12
genes
9
heifer traits
8
traits measured
8
heifer fertility
8
brahman cattle
8
multi-trait meta-analysis
8
genomic regions
8
three traits
8

Similar Publications

Inflammatory gene expression profile of oral plasmablastic lymphoma.

Virchows Arch

September 2025

Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Minas Gerais, Av. Antônio Carlos, Pampulha, Belo Horizonte, 31270-901, Brazil.

Plasmablastic lymphoma (PBL) is a rare and aggressive non-Hodgkin lymphoma with a poor prognosis and short survival rates. It is classified as a large B-cell lymphoma subtype, but carries a plasmacytic immunophenotype. Therefore, PBL has pathogenetic overlaps with diffuse large B-cell lymphoma not otherwise specified (DLBCL NOS) and plasma cell neoplasms (PCNs).

View Article and Find Full Text PDF

Essential tremor (ET) is a common neurological disease that is characterized by 4-12 Hz kinetic tremors of the upper limbs and high genetic heterogeneity. Although numerous candidate genes and loci have been reported, the etiology of ET remains unclear. A novel ET-related gene was initially identified in a five-generation family via whole-exome sequencing, and other variants were identified in 772 familial ET probands and 640 sporadic individuals via whole-genome sequencing.

View Article and Find Full Text PDF

Integrative multi-omics and genomic prediction reveal genetic basis of early salt tolerance in alfalfa.

J Genet Genomics

September 2025

State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangd

The genetic basis of early-stage salt tolerance in alfalfa (Medicago sativa L.), a key factor limiting its productivity, remains poorly understand. To dissect this complex trait, we integrate genome-wide association study (GWAS) and transcriptomics (RNA-seq) from 176 accessions within a machine learning based genomic prediction framework.

View Article and Find Full Text PDF

Expression and function of new candidate regulators of placodal neurogenesis in Xenopus laevis.

Dev Biol

September 2025

School of Biological and Chemical Sciences, University of Galway, Biomedical Sciences Building, Newcastle Road, Galway H91 W2TY, Ireland. Electronic address:

The transcription factor Six1 and its co-activator Eya1 play central and varied roles during the development of sensory neurons derived from the cranial placodes in vertebrates. Previous studies suggested that these proteins promote both the maintenance of proliferative neuronal progenitors and neuronal differentiation. Context-specific interactions of Six1 and/or Eya1 with different cofactors are likely to contribute to the activation of distinct target genes during different stages of placodal neurogenesis.

View Article and Find Full Text PDF

Regulation of neurogenesis and neuronal migration by Rrm2 and Timp3 following seizures.

Neurobiol Dis

September 2025

Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA; Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA. Electronic address:

Temporal lobe epilepsy is associated with aberrant neurogenesis and ectopic migration of adult-born granule cells (abGCs), yet the molecular mechanisms driving these changes remain poorly defined. Using a pilocarpine-induced mouse model of temporal lobe epilepsy and chemogenetic silencing of abGCs via Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), we previously demonstrated that abGC inhibition reduces both ectopic migration and seizure susceptibility. To identify underlying molecular regulators, we performed RNA sequencing of FACS-isolated abGCs and identified Rrm2 and Timp3 as top candidate genes modulated by seizure activity and neuronal silencing.

View Article and Find Full Text PDF