Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Glioblastoma (GBM) is the most common and most aggressive primary tumor of the central nervous system. Current GBM treatments have low effectiveness. This is mainly due to the high degree of heterogeneity of GBM tumors. Despite similarities in the classic microscopic image, these tumors differ significantly in molecular terms. The aim of the study was to classify GBM tumors into one of four molecular types based on the immunohistochemical expression of EGFR, PDGFRA, NF1, IDH1, p53 and PTEN proteins and find the association between individual glioma molecular types and prognostic clinical and morphological parameters. From the group of 162 patients the classical molecular type of tumor was observed in 17 (10%) patients, in 23 (14%) the tumor was mesenchymal, in 32 (20%) proneural, and in 90 (56%) neural. No significant relationship was observed between the molecular type of GBM tumors and the studied clinical and morphological parameters of prognostic significance. There were also no statistically significant correlations between the GBM tumor molecular type and survival, both in terms of overall survival and relapse-free survival. Analyzing the impact of all prognostic variables and molecular type of GBM on the probability of overall survival, statistically significant relationships were found.

Download full-text PDF

Source
http://dx.doi.org/10.5114/pjp.2021.106439DOI Listing

Publication Analysis

Top Keywords

molecular type
12
pdgfra nf1
8
nf1 idh1
8
idh1 p53
8
p53 pten
8
pten proteins
8
of gbm tumors
8
molecular types
8
clinical morphological
8
morphological parameters
8

Similar Publications

Warm temperature-induced autophagy mediates selective degradation of TIMING OF CAB EXPRESSION 1 thus promoting plant thermomorphogenesis.

Plant Cell

September 2025

Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.

Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.

View Article and Find Full Text PDF

Aims: Although the ability of the heart to adapt to environmental stress has been studied extensively, the molecular and cellular mechanisms responsible for cardioprotection are not yet fully understood. In this study, we sought to elucidate these mechanisms for cytoprotection using a model of stress-induced cardiomyopathy.

Methods And Results: We administered Toll-like receptor (TLR) agonists or diluent to wild-type mice and assessed for cardioprotection against injury from a high intraperitoneal dose of isoproterenol (ISO) administered 7 days later.

View Article and Find Full Text PDF

Uropathogenic Escherichia coli (UPEC) are among the first pathogens to colonise in catheter and non-catheter-associated urinary tract infections. However, these infections are often polymicrobial, resulting in multi-species infections that persist by forming biofilms. Living within these highly antimicrobial tolerant communities, bacteria can establish intra- and inter-specific interactions, including quorum sensing (QS)-mediated signalling mechanisms, which play a key role in biofilm establishment and maturation.

View Article and Find Full Text PDF

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Cancer, with its inherent heterogeneity, is commonly categorized into distinct subtypes based on unique traits, cellular origins, and molecular markers specific to each type. However, current studies primarily rely on complete multi-omics datasets for predicting cancer subtypes, often overlooking predictive performance in cases where some omics data may be missing and neglecting implicit relationships across multiple layers of omics data integration. This paper introduces Multi-Layer Matrix Factorization (MLMF), a novel approach for cancer subtyping that employs multi-omics data clustering.

View Article and Find Full Text PDF