98%
921
2 minutes
20
Surfactant adsorption to fluid interfaces is ubiquitous in biological systems, industrial applications, and scientific fields. Herein, we unravel the impact of the hydrophobic phase (air and oil) and the role of oil polarity on the adsorption of surfactants to fluid interfaces. We investigated the adsorption of anionic (sodium dodecyl sulfate), cationic (dodecyltrimethylammonium bromide), and non-ionic (polyoxyethylene-(23)-monododecyl ether) surfactants at different interfaces, including air and oils, with a wide range of polarities. The surfactant-induced interfacial tension decrease, called the interfacial pressure, correlates linearly with the initial interfacial tension of the clean oil-water interface and describes the experimental results of over 30 studies from the literature. The higher interfacial competition of surfactant and polar oil molecules caused the number of adsorbed molecules at the interface to drop. Further, we found that the critical micelle concentration of surfactants in water correlates to the solubility of the oil molecules in water. Hence, the nature of the oil affects the adsorption behavior and equilibrium state of the surfactant at fluid interfaces. These results broaden our understanding and enable better predictability of the interactions of surfactants with hydrophobic phases, which is essential for emulsion, foam, and capsule formation, pharmaceutical commodities, cosmetics, and many food products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c00668 | DOI Listing |
Philos Trans A Math Phys Eng Sci
September 2025
Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA.
Bacterial motility is strongly influenced by confinement. Here, we derive an asymptotic solution for the flow about a microswimmer enclosed in a weakly deformable Hele-Shaw drop-a drop sandwiched between two solid planes. For a microswimmer modelled as a dipole, we explore the swimmer's trajectory, the evolution of the droplet interface and the drop velocity.
View Article and Find Full Text PDFChemistry
September 2025
Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, 5042, Australia.
2D Bismuth oxycarbonate (2D BOC) nanosheets have a unique layered structure with many applications, including capture and reduction of carbon dioxide. Processing powdered elemental bismuth in water under ambient air conditions using a vortex fluidic device (VFD) results in the formation of 2D BOC without the need of surfactants or other excipients. The induced high shear mechanical energy in the form of micron/submicron topological typhoon like spinning top (ST) fluid flow drives the conversion, which we propose initially melts the metal particles which are spontaneously oxidised at the liquid-quartz tube interface to form 2D bismuth oxide (BiO).
View Article and Find Full Text PDFJ Control Release
September 2025
Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario M5B 1T8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M
Microfluidic hydrodynamic focusing (HF) has emerged as a powerful platform for the controlled synthesis of lipid nanoparticles (LNPs) and liposomes, offering superior precision, reproducibility, and scalability compared to traditional batch methods. However, the impact of HF inlet configuration and channel geometry on nanoparticle formation remains poorly understood. In this study, we present a comprehensive experimental and computational analysis comparing 2-inlet (2-way) and 4-inlet (4-way) HF designs across various sheath inlet angles (45°, 90°, 135°) and cross-sectional geometries (square vs.
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2025
Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao University of Technology, Qingdao 266520, China.
Electrospun scaffolds show strong potential in soft tissue engineering, particularly in promoting the repair of soft tissue lesions, and have attracted increasing research attention in recent years. The macroscopic structure of electrospun scaffolds plays a key role in optimizing mechanical properties, degradation rate, and biocompatibility. These structures can be tailored through post-processing techniques to meet the diverse requirements of different soft tissues.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Mississippi, National Center for Physical Acoustics and Department of Physics and Astronomy, University, Mississippi 38677, USA.
Meniscus oscillations at interfaces between liquids, solids, and air significantly impact fluid dynamics and control. While idealized models exist, experimental data on capillary-gravity wave scattering involving meniscus effects remain limited. In this Letter, we systematically measured wave transmission past a surface-piercing barrier, focusing on meniscus effects.
View Article and Find Full Text PDF