98%
921
2 minutes
20
This study was designed to examine the combined effect of bamboo-biochar (BC) and water-washed lignite (LGT) at copper mine tailings (CuMT) sites on the concentration of Cu and other metals in pore water (PW), their bioavailability, and change in geochemical speciation. Rapeseed (first cropping-season) and wheat (second cropping-season) were grown for 40-days each and the influence of applied-amendments on both cropping seasons was observed and compared. A significant increase in pH, water holding capacity (WHC), and soil organic carbon (SOC) was observed after the applied amendments in second cropping-seasons. The BC-LGT significantly reduced the concentration of Cu in PW after second cropping seasons; however, the concentration of Pb and Zn were increased with the individual application of biochar and LGT, respectively. BC-LGT and BC-2% significantly reduced the bioavailability of Cu and other HMs in both cropping seasons. The treated-CuMT was subjected to spectroscopic investigation through X-ray photoelectron spectroscopy (XPS), Fourier transform Infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD). The results showed that Cu sorption mainly involved the coordination with hydroxyl and carboxyl functional groups, as well as the co-precipitation or complexation on mineral surfaces, which vary with the applied amendment and bulk amount of Mg, Mn, and Fe released during sorption-process. The co-application of BC-LGT exerted significant effectiveness in immobilizing Cu and other HMs in CuMT. The outcomes of the study indicated that co-application of BC-LGT is an efficacious combination of organic and inorganic materials for Cu adsorption which may provide some new information for the sustainable remediation of copper mine tailing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.146536 | DOI Listing |
PLoS One
September 2025
Department of Archaeology and Heritage Studies, School of Culture and Society, Aarhus University, Højbjerg, Denmark.
This article presents a multiproxy investigation of metal samples obtained from 48 Nuragic figurines (so-called bronzetti) and three copper bun ingots. These objects originate from three prominent Sardinian sanctuaries and one unidentified site, dating to the late Nuragic period of the early first millennium BCE. The dataset significantly expands the existing scientific database and unwraps the complex fabrication biographies of the figurines from ore to finished object.
View Article and Find Full Text PDFAdv Colloid Interface Sci
August 2025
Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, 44-100 Gliwice, Poland. Electronic address:
The rapid evolution of microelectronics requires materials that combine exceptional strength, ductility, and electrical conductivity for joining applications and durable lithium-ion battery anodes. Nanotwinned Cu (nt-Cu) surpasses conventional strengthening approaches, which often compromise ductility and conductivity, by using nanoscale twin boundaries to enhance both mechanical and electrical properties. This review examines the thermomechanical characteristics, fabrication methods, multiscale mechanistic insights, and technological applications of nt-Cu, bridging fundamental science with engineering practice.
View Article and Find Full Text PDFLangmuir
September 2025
Key Laboratory of Oil & Gas Fine Chemicals, Xinjiang University, Urumqi 830046, China.
The disposal and management of coal gangue (CG) waste from coal mining pose significant environmental pollution challenges. Here, we propose utilizing CG as raw material to synthesize CG-based NaA-type molecular sieves (CG@NaA MS) through a high-temperature alkali fusion combined with a hydrothermal process. This approach enables the sustainable treatment of copper ions and methylene blue (MB) in wastewater.
View Article and Find Full Text PDFSci Rep
September 2025
School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Although the traditional Sarma method considers the hydrostatic pressure effect, in the actual engineering, the hydraulic conditions are complex and most of them are nonhomogeneous hydraulic boundary conditions, this paper considers the nonhomogeneous hydraulic boundary conditions based on the traditional Sarma method, and based on the improved Sarma method model, the stability evaluation of the designed slope and the slope angle is carried out with the slope of the Aynak open-pit copper mine as the engineering background-optimization study. Firstly, the numerical simulation method carried out the stability analysis of the designed excavation slopes. Then the stability of the final boundary slopes was evaluated based on the improved Sarma method model.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Department of Materials, Imperial College London, London SW7 2AZ, UK.
For reliable electronics, it is important to have an understanding of solder joint failure mechanisms. However, because of difficulties in real-time atomistic scale analysis during deformation, we still do not fully understand these mechanisms. Here, we report on the development of an innovative in situ method of observing the response of the microstructure to tensile strain at room temperature using high-voltage transmission electron microscopy (HV-TEM).
View Article and Find Full Text PDF