Vitamin D regulation of and by long non coding RNAs.

Mol Cell Endocrinol

University of California, San Francisco, 1700, Owens St, San Francisco, CA, 94158, USA; San Francisco VA Medical Center, 1700, Owens St, San Francisco, CA, 94158, USA. Electronic address:

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two percent or less of the genome is used to transcribe mRNAs encoding proteins. Nearly all the remainder is utilized in transcribing non coding RNAs, the bulk of which are RNAs at least 200 base in length, long non coding RNAs (lncRNA). Their number is estimated to be about 28,000, but only a small fraction of lncRNAs are well characterized. That said lncRNAs have been found to regulate a very diverse array of biochemical and genomic functions. One of the transcription factors found to be regulated by and to regulate lncRNA is the vitamin D receptor (VDR). Like lncRNAs VDR is involved in the regulation of numerous biochemical and genomic processes, so it is not surprising that there would be a number of interactions between lncRNAs and VDR in their diverse functions. However, the study of these interactions is in its infancy. To date most attention has been paid to their interactions in cancer. Our own studies have focused on non melanoma skin cancers, keratinocyte carcinomas to be precise. Deletion of VDR from keratinocytes predisposes them to malignant transformation. Among a number of potential mechanisms we found that VDR deletion from these cells alters the lncRNA profile to a more oncogenic configuration, increasing the expression of well known oncogenic lncRNAs and decreasing the expression of well known tumor suppressor lncRNAs. Subsequent studies in other cancers have found similar associations between VDR and oncogenic lncRNAs with evidence of tumor specificity. To date these studies primarily reveal associations rather than causality, but causal links should be expected as research in this field continues to develop.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2021.111317DOI Listing

Publication Analysis

Top Keywords

coding rnas
12
long coding
8
biochemical genomic
8
lncrnas vdr
8
expression well
8
oncogenic lncrnas
8
lncrnas
7
vdr
6
vitamin regulation
4
regulation long
4

Similar Publications

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Molecular subtypes of human skeletal muscle in cancer cachexia.

Nature

September 2025

Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.

Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.

View Article and Find Full Text PDF

Author Correction: Lnc-mg is a long non-coding RNA that promotes myogenesis.

Nat Commun

September 2025

Guangdong Provincial Key Laboratory of Bioengineering Medicine & National Engineering Research Center of Genetic Medicine, Department of Cell Biology and Institute of Biomedicine, Jinan University, Huang-Pu Avenue West 601, Guangzhou, 510632, China.

View Article and Find Full Text PDF

Blood transcriptomic analysis reveals a distinct molecular subtype of treatment resistant depression compared to non-treatment resistant depression.

Brain Behav Immun

September 2025

Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona 08003, Spain.

Treatment-resistant depression (TRD) is a severe condition characterized by chronic and recurrent depressive symptoms, leading to significant morbidity and a considerable socio-economic impact. Genetic and biological studies suggest that TRD is associated with distinct biological characteristics. In this study, we analysed whole-transcriptome differences in 293 patients with major depressive disorder (MDD) to compare TRD (N = 150) vs non-TRD (N = 143) cases.

View Article and Find Full Text PDF

In this edition of Gene's "Editor's Corner" we summarize the complex interactions of different molecular mechanisms behind the pathogenesis of neonatal hypoxic-ischemic encephalopathy (HIE). The topic is relevant, as the therapeutic options for HIE are limited, it is important to have as much knowledge as possible about the molecular processes underlying the disease. In the recent issue of Gene (Gene 952, 2025, 149363), Wang et al.

View Article and Find Full Text PDF