Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the present study, we analyzed variations in bacterial community structure along a salinity gradient in a tropical monsoonal estuary (Cochin estuary [CE]), on the southwest coast of India, using Illumina next-generation sequencing (NGS). Water samples were collected from eight different locations thrice a year to assess the variability in the bacterial community structure and to determine the physico-chemical factors influencing the bacterial diversity. Proteobacteria was the most dominant phyla in the estuary followed by Bacteroidetes, Cyanobacteria, Actinobacteria, and Firmicutes. Statistical analysis indicated significant variations in bacterial communities between freshwater and mesohaline and euryhaline regions, as well as between the monsoon (wet) and nonmonsoon (dry) periods. The abundance of Betaproteobacteria was higher in the freshwater regions, while Alphaproteobacteria and Epsilonproteobactera were more abundant in mesohaline and euryhaline regions of the estuary. Gammaproteobacteria was more abundant in regions with high nutrient concentrations. Various bacterial genera indicating the presence of fecal contamination and eutrophication were detected. Corrplot based on Pearson correlation analysis demonstrated the important physico-chemical variables (temperature, salinity, dissolved oxygen, and inorganic nutrients) that influence the distribution of dominant phyla, class, and genera. The observed spatio-temporal variations in bacterial community structure in the CE were governed by regional variations in anthropogenic inputs and seasonal variations in monsoonal rainfall and tidal influx.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14263-0DOI Listing

Publication Analysis

Top Keywords

bacterial community
16
community structure
16
variations bacterial
12
tropical monsoonal
8
monsoonal estuary
8
dominant phyla
8
mesohaline euryhaline
8
euryhaline regions
8
bacterial
7
estuary
5

Similar Publications

The microbiome and volatile organic compounds reflecting the state of decomposition in an indoor environment.

Sci Justice

September 2025

Department of Chemistry, Eberly College of Science, The Pennsylvania State University, University Park, PA, United States. Electronic address:

Given that a variety of factors can affect the decomposition process, it can be difficult to determine the post-mortem interval (PMI). The process is highly dependent on microbial activity, and volatile organic compounds (VOCs) are a by-product of this activity. Given both have been proposed to assist in PMI determination, a deeper understanding of this relationship is needed.

View Article and Find Full Text PDF

Objective: To externally validate the Paediatric Emergency Care Applied Research Network (PECARN) rule for identifying febrile infants aged <60 days at low risk of serious bacterial infections (SBIs) and assess the utility of the rule with C reactive protein (CRP) instead of procalcitonin (PCT).

Methods: Secondary analysis of data from the Management and Outcomes of Fever in Children in Europe (MOFICHE) study (12 paediatric emergency departments in eight European countries, January 2017 to April 2018) and a Swedish study (four paediatric emergency departments, January 2014 to December 2020). Previously healthy febrile infants aged ≤60 days were included.

View Article and Find Full Text PDF

Heavy metals such as Cu are widely prevalent in wastewater (typically 0.04-157.4 mM in typical treatment systems), threatening microbial communities critical for pollutant removal.

View Article and Find Full Text PDF

The transmission of mosquito-borne diseases is intrinsically linked to mosquito blood-feeding behavior, yet the metabolic adaptations of the midgut microbiota in response to blood meals remain poorly understood. This study aimed to characterize the structural and functional changes in the midgut microbiota of Aedes albopictus following blood feeding and to elucidate their potential physiological implications. In this study, we employed 16S rRNA gene amplification coupled with PacBio Sequel II sequencing to characterize shifts in the midgut microbiota of Aedes albopictus before and after blood feeding on mice.

View Article and Find Full Text PDF

Polyethylene microplastic pollution drives quorum sensing-mediated enrichment of rhizosphere pathogens, resistance genes, and virulence factors genes.

J Hazard Mater

September 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; Lanzhou Eco-Agriculture Experimental Research Station, Lanzhou 730000, China; Key Laboratory of Stress Physio

Microplastics are pervasive soil pollutants, yet their role in driving microbial risk in medicinal plant rhizospheres remains poorly understood. Using polyethylene microplastics (PE-MPs) as a model, this study investigated the dose-dependent effects of PE-MPs (0-1000 mg/kg) on the dynamics of antibiotic resistance genes (ARGs), biocide/metal resistance genes (BMRGs), virulence factor genes (VFGs), mobile genetic elements (MGEs), and human bacterial pathogens (HBPs) in the rhizosphere of Angelica sinensis. Results showed that PE-MPs exposure increased the abundance of these genes and pathogens while simplifying the host microbial community structure.

View Article and Find Full Text PDF