Reuse and recycle: Integrating aquaculture and agricultural systems to increase production and reduce nutrient pollution.

Sci Total Environ

Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106-5131, USA.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Integrated agriculture and aquaculture systems (IAAS) allow nutrients, energy, and water to flow throughout the components of the system, increasing the efficiency with which inputs are converted to food. Yet effectively designing an IAAS requires understanding how nutrients accumulate and alter the system's productivity. Here we developed a mechanistic model for nitrogen transport and utilization and parameterized it using the IAAS in He'eia, Hawai'i. Of note, we modeled tidal influence, which extends existing IAAS models that often assume aquaculture in tank enclosures. We simulated the impact of nitrogen loading from three possible land use scenarios across agriculture and development priorities on the productivity of the fishpond downstream. We projected that organic nitrogen and nitrate concentrations parallel the successive increases in nitrogen loading across management strategies. Autotroph and fish densities were predicted to follow similar trends in response to increased nitrogen availability, causing fish harvests to increase from the current land use (25 kg/ha) to the restored agriculture (35 kg/ha) and urban (50 kg/ha) alternatives. While fish harvests were predicted to be highest in the urban scenario, modeled caloric production in the restored scenario from agriculture and aquaculture would sustain 235 people (4.3 people/ha) in the He'eia IAAS, 16 and 125 times more than the current or urban land uses, respectively. Restoring diversified agriculture was also predicted to retain a larger proportion of nitrogen inputs (0.43) than urbanizing the region (0.30), which would reduce nitrogen export to the adjacent Kāne'ohe Bay. Several state variables were notably sensitive to tidal flux rates, highlighting the importance of incorporating tidal dynamics into a coastal IAAS model. This model provides valuable insights for the management of existing coastal IAAS and design of new IAAS in coastal regions to improve the sustainability of future food systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.146859DOI Listing

Publication Analysis

Top Keywords

agriculture aquaculture
8
iaas
8
nitrogen loading
8
fish harvests
8
coastal iaas
8
nitrogen
7
agriculture
5
reuse recycle
4
recycle integrating
4
aquaculture
4

Similar Publications

Antarctic krill () is the central prey species in the Southern Ocean food web, supporting the largest and fastest-growing fishery in the region, managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Climate change is threatening krill populations and their predators, while current catch limits do not take into account climate variability or krill population dynamics. In 2024, CCAMLR was unable to renew its spatial catch limits, highlighting the urgent need for improved management of the krill fishery to prevent any harm to the Southern Ocean ecosystem.

View Article and Find Full Text PDF

Hnf4α integrates AIF and caspase 3/9 signaling to restrict single and coinfecting pathogens in teleosts.

PLoS Pathog

September 2025

State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.

Hepatocyte nuclear factor 4 alpha (Hnf4α), a conserved nuclear receptor central to vertebrate liver development and metabolic regulation, emerges here as a pivotal immune regulator in teleosts against complex infectious threats. While its metabolic roles are well-established, Hnf4α's function in bacterial infection, viral infection, and bacterial-viral coinfection-major challenges in global aquaculture-remained uncharacterized. This study reveals that teleost Hnf4α acts as a dual-functional immune checkpoint, essential for combating Aeromonas salmonicida, grass carp reovirus (GCRV), and their coinfection.

View Article and Find Full Text PDF

Complete genome of isolate S11-599 from the brain of a silver carp () during a mass mortality event in the Mississippi river.

Microbiol Resour Announc

September 2025

Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA.

The complete genome of isolate S11-599 is presented, recovered from the brain of a silver carp () during a fish mortality event affecting invasive carp in the Mississippi River.

View Article and Find Full Text PDF

Aquaculture and animal producers are increasingly exploring natural additives such as for their health-promoting and sustainability-enhancing roles. Known primarily as a sweetener, also contains bioactive compounds, such as stevioside and rebaudioside A (Reb A), which exhibit antibacterial, antioxidant, immunomodulatory, and metabolic benefits. Recent studies suggest that these compounds may also exert prebiotic-like activities by modulating the gut microbiota, promoting the growth of beneficial bacterial populations (e.

View Article and Find Full Text PDF

A 60-day research was conducted to evaluate the influence of dietary fish oil (FO) and selenium nanoparticles (SeNPs) on performance of juveniles (2.4 ± 0.0 g) reared in seawater (SW) or hypersaline (HS) water conditions.

View Article and Find Full Text PDF