Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: It is challenging to differentiate between phyllodes tumors (PTs) and fibroadenomas (FAs). Artificial intelligence (AI) can provide quantitative information regarding the morphology and textural features of lesions. This study attempted to use AI to evaluate the ultrasonic images of PTs and FAs and to explore the diagnostic performance of AI features in the differential diagnosis of PTs and FAs.
Methods: A total of 40 PTs and 290 FAs <5 cm in maximum diameter found in female patients were retrospectively analyzed. All tumors were segmented by doctors, and the features of the lesions were collated, including circularity, height-to-width ratio, margin spicules, margin coarseness (MC), margin indistinctness, margin lobulation (ML), internal calcification, angle between the long axis of the lesion and skin, energy, grey entropy, and grey mean. The differences between PTs and FAs were analyzed, and the diagnostic performance of AI features in the differential diagnosis of PTs and FAs was evaluated.
Results: Statistically significant differences (P<0.05) were found in the height-to-width ratio, ML, energy, and grey entropy between the PTs and FAs. Receiver operating characteristic (ROC) curve analysis of single features showed that the area under the curve [(AUC) 0.759] of grey entropy was the largest among the four features with statistically significant differences, and the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were 0.925, 0.459, 0.978, and 0.190, respectively. When considering the combinations of the features, the combination of height-to-width ratio, margin indistinctness, ML, energy, grey entropy, and internal calcification was the most optimal of the combinations of features with an AUC of 0.868, and a sensitivity, specificity, PPV, and NPV of 0.734, 0.900, 0.982, and 0.316, respectively.
Conclusions: Quantitative analysis of AI can identify subtle differences in the morphology and textural features between small PTs and FAs. Comprehensive consideration of multiple features is important for the differential diagnosis of PTs and FAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047381 | PMC |
http://dx.doi.org/10.21037/qims-20-919 | DOI Listing |