Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Risk stratification in patients with advanced chronic heart failure (HF) is an unmet need. Circulating microRNA (miRNA) levels have been proposed as diagnostic and prognostic biomarkers in several diseases including HF. The aims of the present study were to characterize HF-specific miRNA expression profiles and to identify miRNAs with prognostic value in HF patients.

Methods And Results: We performed a global miRNome analysis using next-generation sequencing in the plasma of 30 advanced chronic HF patients and of matched healthy controls. A small subset of miRNAs was validated by real-time PCR (P < 0.0008). Pearson's correlation analysis was computed between miRNA expression levels and common HF markers. Multivariate prediction models were exploited to evaluate miRNA profiles' prognostic role. Thirty-two miRNAs were found to be dysregulated between the two groups. Six miRNAs (miR-210-3p, miR-22-5p, miR-22-3p, miR-21-3p, miR-339-3p, and miR-125a-5p) significantly correlated with HF biomarkers, among which N-terminal prohormone of brain natriuretic peptide. Inside the cohort of advanced HF population, we identified three miRNAs (miR-125a-5p, miR-10b-5p, and miR-9-5p) altered in HF patients experiencing the primary endpoint of cardiac death, heart transplantation, or mechanical circulatory support implantation when compared with those without clinical events. The three miRNAs added substantial prognostic power to Barcelona Bio-HF score, a multiparametric and validated risk stratification tool for HF (from area under the curve = 0.72 to area under the curve = 0.82).

Conclusions: This discovery study has characterized, for the first time, the advanced chronic HF-specific miRNA expression pattern. We identified a few miRNAs able to improve the prognostic stratification of HF patients based on common clinical and laboratory values. Further studies are needed to validate our results in larger populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318428PMC
http://dx.doi.org/10.1002/ehf2.13371DOI Listing

Publication Analysis

Top Keywords

heart failure
8
next-generation sequencing
8
advanced chronic
8
identification novel
4
novel circulating
4
circulating micrornas
4
micrornas advanced
4
advanced heart
4
failure next-generation
4
sequencing aims
4

Similar Publications

ObjectivesRecently, atrial fibrillation (AF) has contributed to an increase in cardiovascular deaths in the U.S. Palliative care (PC) and atrial ablation (AA) procedure can elevate quality of life of high-risk AF patients, who are associated with multiple comorbidities.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

Kidney stone disease increases the risk of cardiovascular events.

PLoS One

September 2025

Department of Cardiology, Fuzhou University Affiliated Provincial Hospital, Fujian Provincial Hospital, Fuzhou, Fujian, China.

Introduction: Kidney stone disease is associated with numerous cardiovascular risk factors. However, the findings across studies are non-uniformly consistent, and the control of confounding variables remains suboptimal. This study aimed to investigate the association between kidney stone and cardiovascular disease.

View Article and Find Full Text PDF

Right ventricular (RV) failure is the primary cause of death among patients with pulmonary arterial hypertension (PAH). Patients with congenital heart disease-associated PAH (CHD-PAH) demonstrate improved outcomes compared to patients with other forms of PAH, which is related to the maintenance of an adaptively hypertrophied RV. In an ovine model of CHD-PAH, we aimed to elucidate the cellular, microvascular, and transcriptional adaptations to congenital pressure overload that support RV function.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.

View Article and Find Full Text PDF