Platoon Merging Approach Based on Hybrid Trajectory Planning and CACC Strategies.

Sensors (Basel)

Department of Automotive in the Industry and Transportation Division, Tecnalia Research & Innovation, 48160 Derio, Spain.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Currently, the increase of transport demands along with the limited capacity of the road network have increased traffic congestion in urban and highway scenarios. Technologies such as Cooperative Adaptive Cruise Control (CACC) emerge as efficient solutions. However, a higher level of cooperation among multiple vehicle platoons is needed to improve, effectively, the traffic flow. In this paper, a global solution to merge two platoons is presented. This approach combines: (i) a longitudinal controller based on a feed-back/feed-forward architecture focusing on providing CACC capacities and (ii) hybrid trajectory planning to merge platooning on straight paths. Experiments were performed using Tecnalia's previous basis. These are the AUDRIC modular architecture for automated driving and the highly reliable simulation environment DYNACAR. A simulation test case was conducted using five vehicles, two of them executing the merging and three opening the gap to the upcoming vehicles. The results showed the good performance of both domains, longitudinal and lateral, merging multiple vehicles while ensuring safety and comfort and without propagating speed changes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8069960PMC
http://dx.doi.org/10.3390/s21082626DOI Listing

Publication Analysis

Top Keywords

hybrid trajectory
8
trajectory planning
8
platoon merging
4
merging approach
4
approach based
4
based hybrid
4
planning cacc
4
cacc strategies
4
strategies currently
4
currently increase
4

Similar Publications

Introduction: To address the challenges of current 4D trajectory prediction-specifically, limited multi-factor feature extraction and excessive computational cost-this study develops a lightweight prediction framework tailored for real-time air-traffic management.

Methods: We propose a hybrid RCBAM-TCN-LSTM architecture enhanced with a teacher-student knowledge distillation mechanism. The Residual Convolutional Block Attention Module (RCBAM) serves as the teacher network to extract high-dimensional spatial features via residual structures and channel-spatial attention.

View Article and Find Full Text PDF

During early stages of biofilm formation, Pseudomonas aeruginosa (Pa) PAO1 can sense exopolysaccharide (EPS) trails of Psl deposited on a surface by previous Pa cells to detect trajectories of other cells and to orchestrate motility. This sensory signal is transduced into cyclic diGMP second messengers, but no known Psl receptors and adhesins participate in signal transduction. Here, using bacteria-secreted Psl trails, glycopolymer-patterned surfaces, longitudinal cell tracking, second messenger dual reporters and genetic mutations targeting EPS binding and surface twitching, we find that Pa is capable of sensing EPS directly through mutually constitutive interactions between type IV pili (T4P)-powered twitching and specific adhesin-EPS bonds.

View Article and Find Full Text PDF

NOTCH signaling orchestrates the inflammatory-fibrotic continuum of macrophages in renal allograft rejection.

Exp Cell Res

September 2025

Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, Guangdong 510080, China. Electronic address:

Background: Chronic rejection is a major cause of long-term kidney allograft failure, characterized by persistent inflammation and progressive fibrosis. Macrophages are central mediators of this process, but their phenotypic heterogeneity and regulatory mechanisms in chronic rejection remain incompletely understood.

Methods: We performed single-cell transcriptomic analysis on renal allograft biopsies from patients with different types of rejection and on a time-course rat model of chronic rejection.

View Article and Find Full Text PDF

Coordinated operation of dual-arm manipulators is essential for enhancing the load capacity and adaptability of robotic systems. However, the precise control of the internal and external forces during the coordinated operation of dual-arm manipulators can pose considerable challenges owing to factors such as force interactions, kinematic constraints, positional inaccuracies, and external disturbances. This study focused on precise force-tracking control for a dual-arm manipulator system in the presence of external disturbances and uncertainties.

View Article and Find Full Text PDF

Design and motion control analysis of a hybrid-powered ankle rehabilitation robot.

Comput Methods Biomech Biomed Engin

September 2025

School of Information Engineering, Shaoguan University, Shaoguan, China.

This study presents a novel hybrid-powered ankle robot actuated from above (ARAA) designed to improve the smoothness and control of multiaxial movements in robot-assisted ankle rehabilitation. Addressing the limitations of existing systems, which often lack precise trajectory tracking and consistent force application, the proposed robot integrates pneumatic muscles for actuation along the X-axis and Y-axis, with a servo motor driving motion in the Z-axis. A PID-based posture controller is implemented to ensure accurate control during training, while a reconfigurable mechanism allows adjustment of motion parameters to accommodate individual physiological differences.

View Article and Find Full Text PDF