98%
921
2 minutes
20
Tissue-resident memory T cells (TRM cells) are key elements of tissue immunity. Here, we investigated the role of the regulator of T cell receptor and cytokine signaling, Ptpn2, in the formation and function of TRM cells in skin. Ptpn2-deficient CD8+ T cells displayed a marked defect in generating CD69+ CD103+ TRM cells in response to herpes simplex virus type 1 (HSV-1) skin infection. This was accompanied by a reduction in the proportion of KLRG1- memory precursor cells and a transcriptional bias toward terminal differentiation. Of note, forced expression of KLRG1 was sufficient to impede TRM cell formation. Normalizing memory precursor frequencies by transferring equal numbers of KLRG1- cells restored TRM generation, demonstrating that Ptpn2 impacted skin seeding with precursors rather than downstream TRM cell differentiation. Importantly, Ptpn2-deficient TRM cells augmented skin autoimmunity but also afforded superior protection from HSV-1 infection. Our results emphasize that KLRG1 repression is required for optimal TRM cell formation in skin and reveal an important role of Ptpn2 in regulating TRM cell functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8091133 | PMC |
http://dx.doi.org/10.1084/jem.20200940 | DOI Listing |
J Hepatol
September 2025
Department of Neonatal Surgery, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China. Electronic address:
Background And Aims: Biliary atresia (BA) is a severe neonatal cholangiopathy characterized by progressive inflammation and fibrosis. We aimed to systematically investigate BA pathology using integrated multi-omics.
Methods: Multi-omics integration of BA and control livers revealed sphingolipid dysregulation.
Obesity is a known risk factor for diseases of the pancreas, including diabetes, pancreatic cancer and pancreatitis, but mechanisms remain unclear. To elucidate how obesity impacts pancreatic immune homeostasis, we performed spatial, transcriptomic and functional profiling of human pancreatic immune cells from obese and non-obese organ donors. Obesity was associated with higher density of tissue resident memory T-cells (TRM) in the exocrine pancreas which display high cytotoxic functions and aggregated around macrophages.
View Article and Find Full Text PDFJ Dermatol
September 2025
Department of Dermatology, Gifu University Graduate School of Medicine, Gifu, Japan.
A 49-year-old man with pemphigus vegetans (PVeg) relapsed several times due to cessation of therapy. At the age of 66, vegetative plaques developed at the left oral commissure following mechanical plucking of approximately 500 beard hairs. Treatment with prednisolone (20 mg/day) was continued but yielded no clinical improvement.
View Article and Find Full Text PDFJ Immunol
September 2025
Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016, United States.
Tissue resident memory T cells (TRM) provide protection against local re-infection, and yet the interstitial signals that govern their formation and persistence remain poorly defined. Here, we show that antigen-dependent induction of the chemokine receptor CXCR6, is a conserved adaptation to peripheral tissue infiltration that promotes TRM formation after viral infection. Deficient TRM formation in the absence of CXCR6 was not explained by trafficking as CXCR6 was not required for tissue entry, was dispensable for the early accumulation of antigen-specific CD8+ T cells in skin, and did not restrain their exit.
View Article and Find Full Text PDFJ Exp Med
November 2025
Department of Microbiology and Immunology, Graduate School of Medicine, The University of Osaka, Osaka, Japan.
Tissue-resident memory T cells (TRM) remain in nonlymphatic barrier tissues for extended periods and are deeply involved in immune memory at the site of inflammation. Here, we employed multilayered single-cell analytic approaches including chromatin, gene, and protein profiling to characterize a unique CD4+ TRM subset present in the inflamed gut mucosa of Crohn's disease patients. We identified two key transcription factors, RUNX2 and BHLHE40, as regulators of pathologically relevant CD4+ TRM.
View Article and Find Full Text PDF