ICOS agonists are being investigated for cancer immunotherapy based on the idea that they will reinvigorate exhausted CD8 T cell anti-cancer immunity. Humblin et al. unexpectedly find the opposite-that CD8 T cell-intrinsic ICOS expression restrains rather than promotes exhausted CD8 T cell function in both chronic viral infection and tumor models.
View Article and Find Full Text PDFThe efficacy of Chimeric Antigen Receptor T cells against solid tumors is limited by immunosuppressive factors in the tumor microenvironment including adenosine, which suppresses Chimeric Antigen Receptor T cells through activation of the A receptor. To overcome this, Chimeric Antigen Receptor T cells are engineered to express A receptor, a receptor that signals inversely to A receptor. Using murine and human Chimeric Antigen Receptor T cells, constitutive A receptor overexpression significantly enhances Chimeric Antigen Receptor T cell effector function albeit at the expense of Chimeric Antigen Receptor T cell persistence.
View Article and Find Full Text PDFThe efficacy of chimeric antigen receptor (CAR) T cell therapy in solid tumours is limited by immunosuppression and antigen heterogeneity. To overcome these barriers, 'armoured' CAR T cells, which secrete proinflammatory cytokines, have been developed. However, their clinical application has been limited because of toxicity related to peripheral expression of the armouring transgene.
View Article and Find Full Text PDFLatest advances in super-resolution microscopy allow the study of subcellular features at the level of single proteins, which could lead to discoveries in fundamental biological processes, specifically in cell signaling mediated by membrane receptors. Despite these advances, accurately extracting quantitative information on molecular arrangements of proteins at the 1-20 nm scale through rigorous image analysis remains a significant challenge. Here, we present SPINNA (Single-Protein Investigation via Nearest-Neighbor Analysis): an analysis framework that compares nearest-neighbor distances from experimental single-protein position data with those obtained from realistic simulations based on a user-defined model of protein oligomerization states.
View Article and Find Full Text PDFPeripheral CD8 T cell tolerance is a checkpoint in both autoimmune disease and anti-cancer immunity. Despite its importance, the relationship between tolerance-induced states and other CD8 T cell differentiation states remains unclear. Using flow cytometric phenotyping, single-cell RNA sequencing (scRNA-seq), and chromatin accessibility profiling, we demonstrated that in vivo peripheral tolerance to a self-antigen triggered a fundamentally distinct differentiation state separate from exhaustion, memory, and functional effector cells but analogous to cells defectively primed against tumors.
View Article and Find Full Text PDFMemory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet subset normally associated with chronic infection.
View Article and Find Full Text PDFIkaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted.
View Article and Find Full Text PDFDendritic cells (DCs) regulate immune priming by expressing programmed death ligand 1 (PD-L1) and PD-L2, which interact with the inhibitory receptor PD-1 on activated T cells. PD-1 signaling regulates T cell effector functions and limits autoimmunity. Tumor cells can hijack this pathway by overexpressing PD-L1 to suppress antitumor T cell responses.
View Article and Find Full Text PDFThere is significant clinical interest in targeting adenosine-mediated immunosuppression, with several small molecule inhibitors having been developed for targeting the AR receptor. Understanding of the mechanism by which AR is regulated has been hindered by difficulty in identifying the cell types that express AR due to a lack of robust antibodies for these receptors. To overcome this limitation, here an AR eGFP reporter mouse is developed, enabling the expression of AR during ongoing anti-tumor immune responses to be assessed.
View Article and Find Full Text PDFT cells can acquire a broad spectrum of differentiation states following activation. At the extreme ends of this continuum are short-lived cells equipped with effector machinery and more quiescent, long-lived cells with heightened proliferative potential and stem cell-like developmental plasticity. The latter encompass stem-like exhausted T cells and memory T cells, both of which have recently emerged as key determinants of cancer immunity and response to immunotherapy.
View Article and Find Full Text PDFMol Aspects Med
December 2022
Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates.
View Article and Find Full Text PDFFront Immunol
July 2022
Cytotoxic lymphocytes are essential for anti-tumor immunity, and for effective responses to cancer immunotherapy. Natural killer cell granule protein 7 (NKG7) is expressed at high levels in cytotoxic lymphocytes infiltrating tumors from patients treated with immunotherapy, but until recently, the role of this protein in cytotoxic lymphocyte function was largely unknown. Unexpectedly, we found that highly CD8+ T cell-immunogenic murine colon carcinoma (MC38-OVA) tumors grew at an equal rate in and littermate mice, suggesting NKG7 may not be necessary for effective CD8+ T cell anti-tumor activity.
View Article and Find Full Text PDFFirst evidence of geometrical patterns and defined distances of biomolecules as fundamental parameters to regulate receptor binding and cell signaling have emerged recently. Here, we demonstrate the importance of controlled nanospacing of immunostimulatory agents for the activation of immune cells by exploiting DNA-based nanomaterials and pre-existing crystallography data. We created DNA origami nanoparticles that present CpG-motifs in rationally designed spatial patterns to activate Toll-like Receptor 9 in RAW 264.
View Article and Find Full Text PDFCD21 age-associated or atypical memory B cells are autoantibody enriched and poised for plasma cell differentiation. These cells overaccumulate in chronic infections, autoimmune disease, and immunodeficiency, posing the question of what checkpoints normally oppose their accumulation. Here, we reveal a critical role for paralogous calcium-NFAT-regulated transcription factors EGR2 and EGR3 that are induced in self-reactive B cells.
View Article and Find Full Text PDFDNA-based nanostructures are actively gaining interest as tools for biomedical and therapeutic applications following the recent development of protective coating strategies prolonging structural integrity in physiological conditions. For tailored biological action, these nanostructures are often functionalized with targeting or imaging labels using DNA base pairing. Only if these labels are accessible on the structure's surface will they be able to interact with their intended biological target.
View Article and Find Full Text PDFAdenosine is an immunosuppressive factor that limits anti-tumor immunity through the suppression of multiple immune subsets including T cells via activation of the adenosine A receptor (AR). Using both murine and human chimeric antigen receptor (CAR) T cells, here we show that targeting AR with a clinically relevant CRISPR/Cas9 strategy significantly enhances their in vivo efficacy, leading to improved survival of mice. Effects evoked by CRISPR/Cas9 mediated gene deletion of AR are superior to shRNA mediated knockdown or pharmacological blockade of AR.
View Article and Find Full Text PDFPharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6) are an approved treatment for hormone receptor-positive breast cancer and are currently under evaluation across hundreds of clinical trials for other cancer types. The clinical success of these inhibitors is largely attributed to well-defined tumor-intrinsic cytostatic mechanisms, whereas their emerging role as immunomodulatory agents is less understood. Using integrated epigenomic, transcriptomic, and proteomic analyses, we demonstrated a novel action of CDK4/6 inhibitors in promoting the phenotypic and functional acquisition of immunologic T-cell memory.
View Article and Find Full Text PDFChronic stimulation of CD8 T cells triggers exhaustion, a distinct differentiation state with diminished effector function. Exhausted cells exist in multiple differentiation states, from stem-like progenitors that are the key mediators of the response to checkpoint blockade, through to terminally exhausted cells. Due to its clinical relevance, there is substantial interest in defining the pathways that control differentiation and maintenance of these subsets.
View Article and Find Full Text PDFTissue-resident memory T cells (TRM cells) are key elements of tissue immunity. Here, we investigated the role of the regulator of T cell receptor and cytokine signaling, Ptpn2, in the formation and function of TRM cells in skin. Ptpn2-deficient CD8+ T cells displayed a marked defect in generating CD69+ CD103+ TRM cells in response to herpes simplex virus type 1 (HSV-1) skin infection.
View Article and Find Full Text PDFMultimodal single-cell RNA sequencing enables the precise mapping of transcriptional and phenotypic features of cellular differentiation states but does not allow for simultaneous integration of critical posttranslational modification data. Here, we describe SUrface-protein Glycan And RNA-seq (SUGAR-seq), a method that enables detection and analysis of N-linked glycosylation, extracellular epitopes, and the transcriptome at the single-cell level. Integrated SUGAR-seq and glycoproteome analysis identified tumor-infiltrating T cells with unique surface glycan properties that report their epigenetic and functional state.
View Article and Find Full Text PDFFront Immunol
July 2021
Immunotherapy has revolutionized the treatment of cancer. Nevertheless, the majority of patients do not respond to therapy, meaning a deeper understanding of tumor immune evasion strategies is required to boost treatment efficacy. The vast majority of immunotherapy studies have focused on how treatment reinvigorates exhausted CD8 T cells within the tumor.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cell therapy has been highly successful in hematological malignancies leading to their US Food and Drug Administration (FDA) approval. However, the efficacy of CAR T cells in solid tumors is limited by tumor-induced immunosuppression, leading to the development of combination approaches, such as adjuvant programmed cell death 1 (PD-1) blockade. Current FDA-approved methods for generating CAR T cells utilize either anti-CD3 and interleukin (IL)-2 or anti-CD3/CD28 beads, which can generate a T cell product with an effector/exhausted phenotype.
View Article and Find Full Text PDF