98%
921
2 minutes
20
Fe(iii) is a common pollutant released into our ecosystem from various industrial and anthropogenic activities which when in excess interferes with human health. A plethora of sensors based on various designs and working principles are being continuously synthesized and improvised for its facile detection. In the present review, we have provided a brief overview of the developments made in the field of metal organic framework (MOF) based optical sensors for Fe3+. MOFs have exponentially emerged in the field of research due to their high porosity, modular construction and easy tunability. These inorganic-organic hybrid porous materials are being essentially promoted as optical sensors because of their unique photophysical properties and potential sensing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1dt00353d | DOI Listing |
Light Sci Appl
September 2025
State Key Laboratory of Flexible Electronics, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NUPT), Nanjing, 210023, China.
As the demand for edge platforms in artificial intelligence increases, including mobile devices and security applications, the surge in data influx into edge devices often triggers interference and suboptimal decision-making. There is a pressing need for solutions emphasizing low power consumption and cost-effectiveness. In-sensor computing systems employing memristors face challenges in optimizing energy efficiency and streamlining manufacturing due to the necessity for multiple physical processing components.
View Article and Find Full Text PDFVirology
September 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:
Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.
View Article and Find Full Text PDFAdv Mater
September 2025
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland.
AlN is a core material widely used as a substrate and heat sink in various electronic and optoelectronic devices. Introducing luminescent properties into intrinsic AIN opens new opportunities for next-generation intelligent sensors, self-powered displays, and wearable electronics. In this study, the first evidence is presented of AlN crystals exhibiting satisfactory mechanoluminescence (ML), photoluminescence (PL), and afterglow performance, demonstrating their potential as novel multifunctional optical sensors.
View Article and Find Full Text PDFFront Pharmacol
August 2025
Shenzhen Institute for drug Control, Shenzhen, China.
Introduction: The procedural complexity and time-consuming of conventional pesticide residue detection methods in traditional Chinese medicines (TCMs) significantly impeded their application in modern systems. To address this, this study presented an innovative dual-mode sensor driven by Cu/Cu redox-cycling, which achieved efficient signal transduction from enzyme inhibition to optical response for rapid acetylcholinesterase (AChE) activity and organophosphorus pesticide (OP) residue detection.
Methods: The AB-Cu NPs sensor, a dynamic redox-responsive system, was constructed via coordination-driven assembly of Azo-Bodipy 685 (AB 685) and Cu.
ACS Omega
September 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico.
In this work, carbon nanodots (CNDs) were synthesized via a pyrolysis carbonization method using petals. The synthesized CNDs exhibit optical absorption in the UV region, with a tail extending out into the visible range. When these CNDs interact with Ho ions through charge transfer processes, they form an RE-CNDs hybrid (Rare Earth-CNDs hybrid), resulting in fluorescence quenching in an aqueous solution.
View Article and Find Full Text PDF