98%
921
2 minutes
20
The proliferation of ever-larger wind turbines poses risks to wildlife, especially from avian collision, yet avoidance behaviour of large-bodied, long-lived bird species in relation to wind turbines remains little studied away from collision "black spots" and offshore marine environments. Here, three-dimensional flight trajectory data are reported from a laser range-finder study of local movements of large-bodied birds (e.g. swans, geese, gulls, cormorants, raptors and cranes, whose populations are relatively more demographically sensitive to collision mortality) in relation to seven terrestrial 150-222 m high (mean 182 m) wind turbines constructed in Denmark in a N-S line. Comparisons of two-dimensional flight passages between turbines pre- (n = 287) and post-construction (n = 1210) showed significant (P < 0.0001) reductions from 48% to 35% within 150 m of each turbine, with corresponding increase 200-300 m from turbines. Results also showed a significant (P < 0.001) 50% reduction in the percentage of avian passages (from 21% to 10%) through the maximum turbine sweep area after construction and that the proportion of birds that passed between turbines at heights below (0-45 m) and above the turbine sweep area (> 182 m) were significantly greater (P < 0.0001) post-construction than prior to construction. These are the first results from tracking large-bodied bird flight trajectories to show the magnitude of their vertical and horizontal adjustments to the presence of turbines, which have implications for assumptions of even flight densities made by collision risk models currently used to predict avian turbine collision rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2021.112647 | DOI Listing |
Physiol Plant
September 2025
CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, China.
Balsa (Ochroma lagopus Swartz), the world's lightest wood and a crucial material in wind turbine blades, holds significant potential to contribute to carbon neutrality efforts when cultivated in tropical areas such as Xishuangbanna, China. However, balsa trees planted in Xishuangbanna exhibit early branching, resulting in reduced wood yield. Our study investigated the pivotal factors in regulating shoot apical dominance and branching by comparing an early-branching cultivar from Indonesia with a late-branching cultivar from Ecuador.
View Article and Find Full Text PDFPLoS One
September 2025
Electrical Engineering Determent, Faculty of Engineering, Minia University, Minia, Egypt.
Renewable energy systems are at the core of global efforts to reduce greenhouse gas (GHG) emissions and to combat climate change. Focusing on the role of energy storage in enhancing dependability and efficiency, this paper investigates the design and optimization of a completely sustainable hybrid energy system. Furthermore, hybrid storage systems have been used to evaluate their viability and cost-benefits.
View Article and Find Full Text PDFPLoS One
September 2025
School of Civil Engineering, Shandong Jianzhu University, Jinan, China.
In engineering structure performance monitoring, capturing real-time on-site data and conducting precise analysis are critical for assessing structural condition and safety. However, equipment instability and complex on-site environments often lead to data anomalies and gaps, hindering accurate performance evaluation. This study, conducted within a wind farm reinforcement project in Shandong Province, addresses these challenges by focusing on anomaly detection and data imputation for weld nail strain, anchor cable axial force, and concrete strain.
View Article and Find Full Text PDFAntimicrob Steward Healthc Epidemiol
August 2025
School of Medicine, Stanford University, Palo Alto, CA, USA.
Objective: To evaluate the effectiveness and acceptability of ventilation interventions in naturally ventilated hospitals in Liberia.
Design: Difference-in-differences analysis of pre- and post-air changes per hour of intervention and control spaces.
Setting: Hospitals in Bong and Montserrado Counties, Liberia.
Waste Manag Res
September 2025
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China.
This study investigates the application of triboelectric separation technology for the efficient recovery of glass fibre-reinforced polymers (GFRPs) from wind turbine blade. Through systematic experiments, the effects of friction materials, electrode voltage and feed rate on separation efficiency were evaluated. The results demonstrate that using polymethyl methacrylate as the friction material, with an electrode voltage of 12.
View Article and Find Full Text PDF