98%
921
2 minutes
20
To explore brain architecture and pathology, a consistent and reliable methodology to visualize the three-dimensional cerebral microvasculature is beneficial. Perfusion-based vascular labeling is quick and easily deliverable. However, the quality of vascular labeling can vary with perfusion-based labels due to aggregate formation, leakage, rapid photobleaching, and incomplete perfusion. We describe a simple, two-day protocol combining perfusion-based labeling with a two-day clearing step that facilitates whole-brain, three-dimensional microvascular imaging and characterization. The combination of retro-orbital injection of Lectin-Dylight-649 to label the vasculature, the clearing process of a modified iDISCO+ protocol, and light-sheet imaging collectively enables a comprehensive view of the cerebrovasculature. We observed increase in contrast-to-background ratio of Lectin-Dylight-649 vascular labeling over endogenous green fluorescent protein fluorescence from a transgenic mouse model. With light-sheet microscopy, we demonstrate sharp visualization of cerebral microvasculature throughout the intact mouse brain. Our tissue preparation protocol requires fairly routine processing steps and is compatible with multiple types of optical microscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056070 | PMC |
http://dx.doi.org/10.1117/1.NPh.8.2.025004 | DOI Listing |
Adv Pharm Bull
July 2025
Stem Cell Research Center, Tabriz University of University of Medical Sciences, Tabriz, Iran.
Purpose: Spinal cord ischemia-reperfusion injury (SCII) is initiated following the occlusion of supporting blood vessels, leading to the loss of neurological function. Here, we aimed to study the regenerative properties of tourniquet-induced hindlimb ischemia exosomes (Exos) in SCII Wistar rats.
Methods: Exos were isolated from rats following tourniquet-induced hindlimb ischemia.
Circulation
September 2025
Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
PLoS One
September 2025
School of Medical Engineering, Xinxiang Medical University, Xinxiang, China.
Computer-aided diagnostic (CAD) systems for color fundus images play a critical role in the early detection of fundus diseases, including diabetes, hypertension, and cerebrovascular disorders. Although deep learning has substantially advanced automatic segmentation techniques in this field, several challenges persist, such as limited labeled datasets, significant structural variations in blood vessels, and persistent dataset discrepancies, which continue to hinder progress. These challenges lead to inconsistent segmentation performance, particularly for small vessels and branch regions.
View Article and Find Full Text PDFComput Biol Med
September 2025
Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
Intracranial aneurysms (IAs) are common vascular pathologies with a risk of fatal rupture. Human assessment of rupture risk is error prone, and treatment decision for unruptured IAs often rely on expert opinion and institutional policy. Therefore, we aimed to develop a computer-assisted aneurysm rupture prediction framework to help guide the decision-making process and create future decision criteria.
View Article and Find Full Text PDFPlant J
September 2025
Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403, USA.
Translation of the chloroplast psbA mRNA in angiosperms is activated by photodamage of its gene product, the D1 subunit of photosystem II (PSII), providing nascent D1 for PSII repair. The involvement of chlorophyll in the regulatory mechanism has been suggested due to the regulatory roles of proteins proposed to mediate chlorophyll/D1 transactions and the fact that chlorophyll is synthesized only in the light in angiosperms. We used ribosome profiling and RNA-seq to address whether the effects of light on chloroplast translation are conserved in the liverwort Marchantia (Marchantia polymorpha), which synthesizes chlorophyll in both the dark and the light.
View Article and Find Full Text PDF