Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361726PMC
http://dx.doi.org/10.1111/tpj.15278DOI Listing

Publication Analysis

Top Keywords

lipid map
12
developmental stages
12
plant lipids
8
lipid
8
tissues developmental
8
lipids
6
plant
5
arabidopsis
4
arabidopsis lipid
4
map reveals
4

Similar Publications

Steroid hormones are integral to pregnancy and fetal development, regulating processes such as metabolism, inflammation, and immune responses. Excessive prenatal steroid exposure, through lifestyle choices or environmental chemicals, can lead to metabolic dysfunctions in offspring. The research focuses on how exposure to testosterone (T) and bisphenol A (BPA) affects the liver's DNA methylome, a key component of the epigenome influencing long-term health.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatohepatitis (MASH) affects a large proportion of the global population and is widely regarded as the fastest growing cause of hepatocellular carcinoma. Currently, approved therapeutic strategies for MASH are limited. Therefore, this study used the Connectivity Map (CMap) database to identify a candidate compound for MASH, evaluate its efficacy in experimental models, and explore its mechanism of action.

View Article and Find Full Text PDF

Huangkui capsules for diabetic nephropathy: Comprehensive review of efficacy and molecular mechanisms.

Phytomedicine

August 2025

Center for Clinical Reseach, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China. Electronic address:

Background: The management of kidney diseases urgently needs additional therapeutic options. Encouraging evidence suggests the efficacy of Huangkui capsules (HKCs), a plant-derived traditional medicine, in treating various subtypes of nephropathy. However, current evidence is fragmented between clinical outcomes and mechanistic insights.

View Article and Find Full Text PDF

Background: The intestinal microbiota composition has been linked to neurocognitive impairment in people with HIV (PWH). However, the potential interplay of microbial species and related metabolites, particularly in the context of an HIV cure strategy remains underexplored. The BCN02 trial evaluated the impact of romidepsin (RMD), used as a HIV-1 latency reversing agent and with reported beneficial neurological effects, combined with the MVA.

View Article and Find Full Text PDF

Embryo development entails the formation of anatomical structures with distinct biochemical compositions. Compared with the wealth of knowledge on gene regulation, our understanding of metabolic programs operating during embryogenesis is limited. Mass spectrometry imaging (MSI) has the potential to map the distribution of metabolites across embryo development.

View Article and Find Full Text PDF