Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rituximab (RTX), an antibody targeting CD20, is widely used as a first-line therapeutic strategy in B cell-mediated autoimmune diseases. However, a large proportion of patients either do not respond to the treatment or relapse during B cell reconstitution. Here, we characterize the cellular basis responsible for disease relapse in secondary lymphoid organs in humans, taking advantage of the opportunity offered by therapeutic splenectomy in patients with relapsing immune thrombocytopenia. By analyzing the B and plasma cell immunoglobulin gene repertoire at bulk and antigen-specific single-cell level, we demonstrate that relapses are associated with two responses coexisting in germinal centers and involving preexisting mutated memory B cells that survived RTX treatment and naive B cells generated upon reconstitution of the B cell compartment. To identify distinctive characteristics of the memory B cells that escaped RTX-mediated depletion, we analyzed RTX refractory patients who did not respond to treatment at the time of B cell depletion. We identified, by single-cell RNA sequencing (scRNA-seq) analysis, a population of quiescent splenic memory B cells that present a unique, yet reversible, RTX-shaped phenotype characterized by down-modulation of B cell-specific factors and expression of prosurvival genes. Our results clearly demonstrate that these RTX-resistant autoreactive memory B cells reactivate as RTX is cleared and give rise to plasma cells and further germinal center reactions. Their continued surface expression of CD19 makes them efficient targets for current anti-CD19 therapies. This study thus identifies a pathogenic contributor to autoimmune diseases that can be targeted by available therapeutic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610758PMC
http://dx.doi.org/10.1126/scitranslmed.abc3961DOI Listing

Publication Analysis

Top Keywords

memory cells
20
splenic memory
8
cells
8
naive cells
8
immune thrombocytopenia
8
autoimmune diseases
8
patients respond
8
respond treatment
8
memory
5
rituximab-resistant splenic
4

Similar Publications

Cancer vaccines in hematologic malignancy: A systematic review of the rational and evidence for clinical use.

Best Pract Res Clin Haematol

September 2025

Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, USA.

Immunotherapy, including immune checkpoint blockade, CART cells and bispecific antibodies have resulted in dramatic improvements in outcomes for patients with hematological malignancies, demonstrating the unique potency of the immune system in targeting malignant cells. The development of cancer vaccines aims to evoke an activated effector cell population and a memory response to provide long term immune surveillance to protect from relapse. Developing a potent cancer vaccine relies on identifying appropriate antigen targets, enhancing antigen presentation, and overcoming the immune suppressive milieu of the micro-environment.

View Article and Find Full Text PDF

YXQN Ameliorates Vascular Dementia in 2-VO Rats via Inhibition of Ferroptosis.

J Ethnopharmacol

September 2025

Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China; The Key Discipline for Integration of Chinese and Western B

Ethnopharmacological Relevance: YangXue QingNao Wan (YXQN) is a compound Chinese medicine comprising of 11 traditional Chinese medicinal herbs, including Angelica sinensis, Ligusticum chuanxiong, and Paeonia lactiflora, etc. Previous studies in our laboratory have demonstrated that YXQN improved cerebral microcirculation in hypertensive rats. However, its efficacy and underlying mechanisms in treating vascular dementia (VaD) remain unclear.

View Article and Find Full Text PDF

S1P/S1PR4 Promotes the Differentiation of CD8 tissue-resident memory T Cells Aggravating Bile Duct Injury in Biliary Atresia.

J Hepatol

September 2025

Department of Neonatal Surgery, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China. Electronic address:

Background And Aims: Biliary atresia (BA) is a severe neonatal cholangiopathy characterized by progressive inflammation and fibrosis. We aimed to systematically investigate BA pathology using integrated multi-omics.

Methods: Multi-omics integration of BA and control livers revealed sphingolipid dysregulation.

View Article and Find Full Text PDF

IL-25-induced memory type 2 innate lymphoid cells enforce mucosal immunity.

Cell

September 2025

Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Electronic address:

Adaptation of intestinal helminths to vertebrates involved the evolution of strategies to attenuate host tissue damage to support parasite reproduction and dissemination of offspring to the environment. Helminths initiate the IL-25-mediated tuft cell-type 2 innate lymphoid cell (ILC2) circuit that enhances barrier protection of the host, although viable parasites can target and limit this pathway. We used IL-25 alone to create small intestinal adaptation, marked by anatomic and immunologic changes that persisted months after induction.

View Article and Find Full Text PDF

Alternative splicing enables cells to acquire novel phenotypic traits for adaptation to changes in the environment. However, the mechanisms that allow these dynamic changes to occur in a timely and sustained manner remain unknown. Recent investigations unveiled a new regulatory layer important for splicing dynamics and memory: the chromatin.

View Article and Find Full Text PDF