Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Semiconductor nanoparticles are promising materials for light-driven processes such as , , and . Effective application of these materials alongside light can assist in reducing the dependence on fossil-fuel driven processes and aid in resolving critical environmental issues. However, severe recombination of the photogenerated charge-carriers is a persistent bottleneck in several semiconductors, particularly those that contain multiple cations. This issue typically manifests in the form of reduced lifetime of the photoexcited electrons-holes leading to a decrease in the quantum efficiency of various light-driven applications. On the other hand, semiconducting oxides or sulfides, coupled with reduced graphene oxide (RGO), have drawn a considerable interest recently, partly because of the RGO enhancing charge separation and transportation through its honeycomb sp network structure. High electron mobility, conductivity, surface area, and cost-effectiveness are the hallmark of the RGO. This Mini-Review focuses on (1) examining the approach to the integration of RGO with semiconductors to produce binary nanocomposites; (2) insights into the microstructure interface, which plays a critical role in leveraging charge transport; (3) key examples of RGO composites with oxide and sulfide semiconductors with photocatalysis as application; and (4) strategies that have to be pursued to fully leverage the benefit of RGO in RGO/semiconductors to attain high photocatalytic activity for a sustainable future. This Mini-Review focuses on areas requiring additional exploration to fully understand the interfacial science of RGO and semiconductor, for clarity regarding the interfacial stability between RGO and the semiconductor, electronic coupling at the heterojunction, and morphological properties of the nanocomposites. We believe that this Mini-Review will assist with streamlining new directions toward the fabrication of RGO/semiconductor nanocomposites with higher photocatalytic activity for solar-driven multifunctional applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8028001PMC
http://dx.doi.org/10.1021/acsomega.0c06045DOI Listing

Publication Analysis

Top Keywords

photocatalytic activity
12
reduced graphene
8
graphene oxide
8
rgo/semiconductor nanocomposites
8
rgo
8
mini-review focuses
8
rgo semiconductor
8
boosting photocatalytic
4
activity reduced
4
oxide rgo/semiconductor
4

Similar Publications

A CoO/AgMoO/CeOternary nanocomposites photocatalyst was successfully synthesized through a straightforward ethanol-assisted chemical method. Comprehensive characterization of its structural and optical properties was conducted using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-DRS), and photoluminescence (PL) analysis. XRD analysis confirmed the presence of CoO, AgMoO and CeO in the ternary composite sample.

View Article and Find Full Text PDF

Construction of melem/BiVO/g-CN photocatalyst with a conjugated S-scheme charge transfer pathway for boosting photocatalytic activity under LED light irradiation.

Environ Res

September 2025

Center for High Technology Development, Nguyen Tat Thanh University, Ho Chi Minh City Hi-Tech Park, Ho Chi Minh City, Vietnam; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam. Electronic address:

The development of novel multijunction heterostructure photocatalysts is critical for the efficient degradation of organic pollutants, attributed to their ability to enhance the separation of photogenerated electron-hole pairs. In our study, a ternary composite, melem/BiVO/g-CN (BVO/CNMH), was synthesized via an acid-soaking method followed by calcination, using g-CN as a sacrificial precursor in the presence of BiVO. This approach yielded a porous, interconnected architecture in BVO/CNMH.

View Article and Find Full Text PDF

Towards durable photocatalytic seawater splitting: design strategies and challenges.

Chem Commun (Camb)

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070

Photocatalytic seawater splitting (PSWS), which utilizes abundant solar and ocean resources, is one of the most promising technologies for sustainable hydrogen production. However, the complex composition of seawater significantly limits the durability and activity of photocatalysts. In this review, we first identify the primary factors that contribute to photocatalyst deactivation during PSWS, including chloride induced corrosion and loss of active sites, and light shielding caused by precipitation of metal cation salts.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

The photocatalytic reduction of carbon dioxide (CO) to chemicals holds significant importance for mitigating the current energy crisis. Rational design of catalytic centers within well-defined structures can effectively enhance the reaction activity and selectivity. In this study, we constructed interrupted zeolitic boron imidazolate frameworks (BIFs) featuring unsaturated coordination at the central Co ion.

View Article and Find Full Text PDF