Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Quantification of immuno-gold labeling can provide valuable information on the quantity and localization of a target within a region of interest (ROI). Background subtraction usually requires preparation of material with a deliberately reduced amount of target component often by gene knockout/knockdown. This paper reports a modified method without the need for gene knockout/knockdown, by using a region outside the ROI as a background and non-immune serum to verify the reliability of the data. An optimized parameter for use in image processing was also developed to improve semi-automatic segmentation of gold particles, by using the standard deviation of pixel intensity together with default parameters (size and intensity) to improve specificity. The modified methods were used to quantify the gold labeling of various components within chloroplasts and their 3 sub-organelle compartments (thylakoid, stroma and starch). Rubisco, actin, myosin, β-tubulin, Endoplasmic reticulum-retention signal HDEL, Sterol methyltransferase 1, and double stranded RNA were all effectively and consistently quantified at the level of the different sub-chloroplast compartments. The approach should be applicable more widely for high resolution labelling of samples in which a background requiring gene knockout/knockdown is not a realistic option.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2021.103060DOI Listing

Publication Analysis

Top Keywords

gene knockout/knockdown
12
sub-chloroplast compartments
8
roi background
8
improved quantification
4
quantification immune-gold
4
immune-gold labeling
4
labeling compare
4
compare distribution
4
distribution cellular
4
cellular factors
4

Similar Publications

Ultra-high field strength electroporation enables efficient DNA transformation and genome editing in nontuberculous mycobacteria.

Microbiol Spectr

September 2025

Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.

Efficient DNA delivery is essential for genetic manipulation of mycobacteria and for dissecting their physiology, pathogenesis, and drug resistance. Although electroporation enables transformation efficiencies exceeding 10⁵ CFU per µg DNA in and , it remains highly inefficient in many nontuberculous mycobacteria (NTM), including . Here, we discovered that NTM such as exhibit exceptional tolerance to ultra-high electric field strengths and that hypertonic preconditioning partially protects cells from electroporation-induced damage.

View Article and Find Full Text PDF

Pirin does not bind to p65 or regulate NFκB-dependent gene expression but does modulate cellular quercetin levels.

Mol Pharmacol

August 2025

Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; "Nicholas V. Perricone, M.D.," Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, Michigan. Electronic address:

Pirin is a nonheme iron-binding protein with a variety of proposed functions, including serving as a coactivator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography and fluorescence polarization studies did not detect an interaction.

View Article and Find Full Text PDF

A single-nucleotide polymorphism in BoDW1 encoding microtubule-associated kinase causes dwarfing in Brassica oleracea.

Plant Physiol Biochem

September 2025

State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. Electronic address:

Cabbage (Brassica oleracea var. capitata) is an important vegetable crop that is widely cultivated throughout the world. Plant height is a key agronomic trait in cabbage, influencing architecture and yield, and is mainly determined by cell division and stem expansion.

View Article and Find Full Text PDF

TaGW2-TaVOZ1 module regulates wheat salt tolerance via both E3 ligase-dependent and -independent pathways.

Sci Adv

September 2025

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.

Wheat production is limited by the rapid expansion of salinized arable land worldwide. Identification of the molecular mechanisms that underlie the salt stress response is of great importance. Here, we uncovered the NAC-type transcription factor, TaVOZ1, as a positive regulator of wheat salt tolerance.

View Article and Find Full Text PDF

Unlabelled: Group B Streptococcus (GBS), a common colonizer of the human genital and gastrointestinal tracts, is a leading cause of neonatal bacterial meningitis, which can lead to severe neurological complications. The hypervirulent serotype III, sequence type 17 (ST-17) strain COH1 is strongly associated with late-onset disease due to its unique set of virulence factors. However, genetic manipulation of ST-17 strains is notoriously challenging, limiting the ability to study key pathogenic genes.

View Article and Find Full Text PDF