98%
921
2 minutes
20
Neuroendocrine neoplasms (NENs) constitute a heterogenous group of malignancies. Translational research into NEN cell biology is the cornerstone for drug development strategies in this field. Somatostatin receptor type 2 (SSTR2) expression is the hallmark of well-differentiated neuroendocrine tumors (NETs). Somatostatin analogs and peptide receptor radionuclide therapy (PRRT) form the basis of anti-SSTR2 treatment onto new combination strategies, antibody-drug conjugates and bispecific antibodies. Classical pathways involved in NET development (PI3K-Akt-mTOR and antiangiogenics) are reviewed but new potential targets for NET treatment will be explored. Epigenetic drugs have shown clinical activity in monotherapy and preclinical combination strategies are more than attractive. Immunotherapy has shown opposite results in different NEN settings. Although the NOTCH pathway has been targeted with disappointing results, new strategies are being developed. Finally, after years of solid preclinical evidence on different genetically engineered oncolytic viruses, clinical trials for refractory NET patients are now ongoing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11864-021-00834-3 | DOI Listing |
Crit Rev Ther Drug Carrier Syst
January 2025
The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
January 2025
Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
Cancer stem cells (CSCs) are a category of cancer cells endowed with the ability to renew themselves, undergo unregulated growth, and exhibit a differentiation capacity akin to that of normal stem cells. CSCs have been linked with tumor metastasis and cancer recurrence due to their ability to elude immune monitoring. As a result, targeting CSCs specifically may improve the efficacy of cancer therapy.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Information Systems and Cybersecurity, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, United States, 1 (210) 458-6300.
Background: Adverse drug reactions (ADR) present significant challenges in health care, where early prevention is vital for effective treatment and patient safety. Traditional supervised learning methods struggle to address heterogeneous health care data due to their unstructured nature, regulatory constraints, and restricted access to sensitive personal identifiable information.
Objective: This review aims to explore the potential of federated learning (FL) combined with natural language processing and large language models (LLMs) to enhance ADR prediction.
J Med Chem
September 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery o
Aberrant activation of fibroblast growth factor receptors (FGFRs) plays a critical role in tumorigenesis across multiple cancer types, driving the development of various FGFR inhibitors. Despite clinical advances, therapeutic efficacy remains limited by the emergence of drug resistance, primarily mediated by gatekeeper mutations in FGFRs. To overcome this challenge, we designed and synthesized a novel series of 7-(1-methyl-1-indole-3-yl)-5-pyrrolo[2,3-]pyrazine derivatives as covalent pan-FGFR inhibitors targeting both wild-type and gatekeeper mutants.
View Article and Find Full Text PDFOrg Lett
September 2025
Frontiers Science Center for Transformative Molecules, State Key Laboratory of Polyolefins and Catalysis, State Key Laboratory of Synergistic Chem-Bio Synthesis, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
C-labeled α-amino acids are important molecules in biological studies and drug development. Cost-effective synthesis of α-amino acids with a high level of C incorporation under mild conditions remains limited. Herein, we report the development of a benzylic C(sp)-H carboxylation method to prepare highly C-labeled α-amino acids, i.
View Article and Find Full Text PDF