98%
921
2 minutes
20
After parturition, bovine uterine stromal cells are often exposed to complex bacterial and viral stimuli owing to epithelial cell rupture, resulting in an inflammatory response. In this study, we used an in vitro model to study the response of bovine endometrial stromal cells to inflammatory mediators and the associated regulated microRNAs in response to lipopolysaccharide. Lipopolysaccharide (LPS) is a bacterial wall component in gram-negative bacteria that causes inflammation upon immune recognition, which is used to create in vitro inflammation models. Thus, we used high-throughput RNA sequencing to identify miRNAs that may have an anti-inflammatory role in the LPS-induced inflammatory response. Two groups of bovine uterine cells were treated with phosphate buffer saline (PBS) and LPS, respectively. Compared with the control (PBS) group, the LPS-treated group had 219 differentially expressed miRNAs, of which 113 were upregulated, and 106 were downregulated. Gene ontology enrichment analysis revealed that the target genes of differentially expressed miRNAs were significantly enriched in several activities, such as transferase activity, small molecule binding, and protein binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the target genes of differential miRNAs were significantly enriched in fluid shear stress and atherosclerosis, MAPK signaling pathway, TNF signaling pathway. By analyzing differentially expressed miRNAs, we found that miR-200c, miR-1247-3p, and let-7b are directly related to the inflammatory response. For instance, miR-200c target genes (MAP3K1, MAP4K3, MAPKAPK5, MAP3K8, MAP3K5) and let-7b target genes (CASP3, IL13, MAPK8, CXCL10) were significantly enriched in the MAPK and IL-17 signaling pathways, respectively. In summary, our research provides insight into the molecular mechanism underlying LPS-induced inflammation in vitro, which may unveil new targets for the treatment of endometritis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2021.03.012 | DOI Listing |
Reprod Biol
September 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 218 Jixi Road, Hefei Anhui230022, China; Key Laboratory of Population Health Across
Current research indicates that polyethylene terephthalate microplastics (PET-MPs) may significantly impair male reproductive function. This study aimed to investigate the potential molecular mechanisms underlying this impairment. Potential gene targets of PET-MPs were predicted via the SwissTargetPrediction database.
View Article and Find Full Text PDFEur J Gastroenterol Hepatol
September 2025
Department of Gastroenterology, First Affiliated Hospital of Shantou University Medical College, Shantou.
Background: Crohn's disease (CD) and rheumatoid arthritis (RA) are autoimmune diseases. CD is known to be closely associated with RA. However, the mechanisms underlying these relationships remain unclear.
View Article and Find Full Text PDFAnnu Rev Pathol
September 2025
3Department of Pathology, Stanford University, Stanford, California, USA;
Clonal hematopoiesis, originally identified as a precursor to hematologic malignancies, has emerged as a significant factor in various nonmalignant diseases. Recent research highlights how somatic mutations in hematopoietic stem cells lead to the expansion of circulating mutated immune cells that exert profound effects on organ function and disease progression. These mutated clones display altered inflammatory profiles and tissue-specific functional consequences, contributing to various diseases including atherosclerotic cardiovascular disease, osteoporosis, heart failure, and neurodegenerative conditions.
View Article and Find Full Text PDFGenetics
September 2025
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
Protein translation regulation is critical for cellular responses and development, yet how elongation stage disruptions shape these processes remains incompletely understood. Here, we identify a single amino acid substitution (P55Q) in the ribosomal protein RPL-36A of Caenorhabditis elegans that confers complete resistance to the elongation inhibitor cycloheximide (CHX). Heterozygous animals carrying both wild-type RPL-36A and RPL-36A(P55Q) develop normally but show intermediate CHX resistance, indicating a partial dominant effect.
View Article and Find Full Text PDFSci Adv
September 2025
Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
(phosphatidylserine synthase 1) encodes an enzyme that facilitates production of phosphatidylserine (PS), which mediates a global immunosuppressive signal. Here, based on in vivo CRISPR screen, we identified PTDSS1 as a target to improve anti-PD-1 therapy. Depletion of in tumor cells increased expression of interferon-γ (IFN-γ)-regulated genes, including , , , and , even in the absence of IFN-γ stimulation in vitro.
View Article and Find Full Text PDF