Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Luteolin is a flavonoid compound widely found in vegetables, fruits, and medicinal plants. In this study, the reaction conditions for luteolin and five metal ions (Ca, Mg, Zn, Fe, and Cu) to form complexes in hot water were optimized, which was at a molar ratio of 1 : 1 for luteolin and metal ions at 90°C in a volume of 20 mL for 2 h, and the ability of luteolin to form complexes with Cu was the strongest. The DPPH scavenging test showed that luteolin exerted a dose-dependent effect on the clearance of free radicals; luteolin-Cu complexes and luteolin-Fe complexes accentuated the clearance of free radicals. Furthermore, we used high performance liquid chromatography (HPLC) to analyze luteolin in samples from two medicinal plants, obtained from the dissolution of aqueous extracts in two different solvents. The results showed that the peak areas for luteolin in the samples dissolved in 20% formic acid-methanol were significantly larger than those from the samples dissolved in methanol alone, with increases in the peak area being 135.6% (Lonicerae Japonicae Flos), and 161.16% (Huangshan wild chrysanthemum). The aforementioned results indicate that complexes formed from organic compounds and metal ions are present in the decoction of a plant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979300PMC
http://dx.doi.org/10.1155/2021/6677437DOI Listing

Publication Analysis

Top Keywords

metal ions
12
lonicerae japonicae
8
japonicae flos
8
huangshan wild
8
wild chrysanthemum
8
medicinal plants
8
luteolin metal
8
form complexes
8
clearance free
8
free radicals
8

Similar Publications

The gas-phase structures of dibenzo-24-crown-8 (DB24C8) and dinaphtho-24-crown-8 (DN24C8) complexes with divalent metal ions (Mg, Ca, Sr, Ba, Fe, Ni, and Zn) were investigated by cryogenic ion mobility-mass spectrometry (IM-MS) in combination with density functional theory calculations. Several complexes, particularly those of DN24C8, exhibited multiple coexisting conformers. DFT-optimized structures were classified based on the relative orientation of the two aromatic rings in the crown ether.

View Article and Find Full Text PDF

Silicon carbide (SiC) membranes combine exceptional chemical, thermal, and mechanical stability but suffer from surface inertness that precludes functionalization. Conversely, MOFs offer unmatched molecular selectivity but are typically powders, severely limiting their practical use. To address this, we develop a generalizable route to fabricate ultrastable MOF@SiC membranes via sequential oxidation and acidification, creating abundant Si-OH sites on SiC surfaces that covalently bond with Zr-MOF crystals; the bonding mechanism between MOFs and substrates has been extensively studied.

View Article and Find Full Text PDF

Introduction: Manganese-oxidizing bacteria (MOB) play a critical role in converting soluble Mn(II) to insoluble Mn(III/IV) oxides, which have been widely applied for environmental remediation, particularly in heavy metal pollution control. Therefore, the discovery of novel MOB strains is of great significance for advancing pollution mitigation and ecosystem restoration.

Methods: In this study, a manganese-oxidizing bacterial strain was isolated from Mn-contaminated soil near an electroplating factory using selective LB medium supplemented with 10 mmol/L manganese chloride (MnCl), and the Leucoberbelin Blue (LBB) assay was employed to screen and identify strains with strong Mn(II)-oxidation ability.

View Article and Find Full Text PDF

Trimetallic Au-Ag-Cu Joint Doped Hydroxyapatite: Synergistic Photo-Fenton-Like Catalytic Performance Enhancement.

ACS Omega

September 2025

College of Materials and Chemical Engineering, Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, Anhui 237012, P. R. China.

Photo-Fenton oxidation, as a promising wastewater treatment technology, suffers from double barriers: the sluggish Fenton catalytic rate of transition metal ions and inefficient visible light absorption, both of which severely constrain the performance enhancement of catalytic systems. Therefore, accelerating electron transfer processes and broadening optical absorption spectra have become critical scientific challenges for practical implementation. Herein, a composite catalyst system based on Au-Ag-Cu trimetallic species codoped on hydroxyapatite (HAp) was reported via an ion/ligand impregnation method.

View Article and Find Full Text PDF

A novel silica-based sorbent, silica-carbazole-formazan (Si-Carb-Formazan), was synthesized through in situ functionalization with a newly prepared carbazole formazan derivative to remove Cu-(II) ions from aqueous solutions efficiently. The sorbent was characterized using techniques such as FTIR, SEM, TGA, and XPS, which revealed a porous structure with a high surface area and excellent thermal stability. Batch adsorption experiments analyzed the influence of various factors on the sorbent's performance, demonstrating its high efficiency.

View Article and Find Full Text PDF