Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Advances in highly multiplexed tissue imaging are transforming our understanding of human biology by enabling detection and localization of 10-100 proteins at subcellular resolution (Bodenmiller, 2016). Efforts are now underway to create public atlases of multiplexed images of normal and diseased tissues (Rozenblatt-Rosen et al., 2020). Both research and clinical applications of tissue imaging benefit from recording data from complete specimens so that data on cell state and composition can be studied in the context of overall tissue architecture. As a practical matter, specimen size is limited by the dimensions of microscopy slides (2.5 × 7.5 cm or ~2-8 cm of tissue depending on shape). With current microscopy technology, specimens of this size can be imaged at sub-micron resolution across ~60 spectral channels and ~10 cells, resulting in image files of terabyte size. However, the rich detail and multiscale properties of these images pose a substantial computational challenge (Rashid et al., 2020). See Rashid et al. (2020) for an comparison of existing visualization tools targeting these multiplexed tissue images.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989801PMC
http://dx.doi.org/10.21105/joss.02579DOI Listing

Publication Analysis

Top Keywords

multiplexed tissue
12
tissue images
8
tissue imaging
8
rashid 2020
8
tissue
6
minerva light-weight
4
light-weight narrative
4
narrative image
4
image browser
4
multiplexed
4

Similar Publications

Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.

View Article and Find Full Text PDF

Background: Tertiary lymphoid structures (TLSs) are linked to prognosis in esophageal squamous cell carcinoma (ESCC), but whether the distribution, abundance, and maturity of TLSs affect therapeutic efficacy and prognosis in ESCC treated with neoadjuvant chemoradiotherapy plus immunotherapy (NRCI) remains unclear. We explored TLS characteristics and correlated them with patient survival.

Methods: A total of 157 resectable ESCC patients treated with neoadjuvant therapy between September 2020 and May 2023 were divided into NRCI (n=49) and neoadjuvant chemoimmunotherapy (NCI, n=108) groups.

View Article and Find Full Text PDF

5-Ethynyl-2'-deoxyuridine (EdU) has revolutionized DNA replication and cell cycle analyses through fast, efficient click chemistry detection. However, commercial EdU kits suffer from high costs, proprietary formulations, limited antibody multiplexing capabilities, and difficulties with larger biological specimens. Here, we present OpenEMMU (Open-source EdU Multiplexing Methodology for Understanding DNA replication dynamics), an optimized, affordable, and user-friendly click chemistry platform utilizing off-the-shelf reagents.

View Article and Find Full Text PDF

ChroMOS: a "microwire-like" CMOS neural probe for chronic neural recordings in mice.

Biosens Bioelectron

September 2025

Microtechnology for Neuroelectronics Unit (NetS(3) lab), Fondazione Istituto Italiano di Tecnologia, Genova, Italy.

Achieving stable and continuous monitoring of signals of numerous single neurons in the brain faces the conflicting challenge of increasing the microelectrode count while minimizing cross-sectional shank dimensions to reduce tissue damage, foreign-body-reaction and maintain signal quality. Passive probes need to route each microelectrode individually to external electronics, thus increasing shank size and tissue-damage as the number of electrodes grows. Active complementary metal-oxide-semiconductor (CMOS) probes overcome the limitation in electrode count and density with on-probe frontend, addressing and multiplexing circuits, but current probes have relatively large shank widths of 70 - 100 μm.

View Article and Find Full Text PDF

Unraveling cellular dynamic changes in tumor evolution induced by long-term low dose-rate radiation.

Br J Cancer

September 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Key Laboratory of Radiation Damage and Countermeasures of Jiangsu Provincial Universities and Col

Background: In recent years, there has been a steady increase in professionals engaged in radioactive work. The biological impacts of long-term exposure to low dose-rate radiation remain elusive, as there is a dearth of systematic research in this field.

Methods: BEAS-2B cells were used to establish a cell model with continuous passaging after radiation exposure, which was subsequently subjected to in vivo tumorigenesis assays and in vitro malignant phenotype experiments.

View Article and Find Full Text PDF