Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background Inherited cardiomyopathies display variable penetrance and expression, and a component of phenotypic variation is genetically determined. To evaluate the genetic contribution to this variable expression, we compared protein coding variation in the genomes of those with hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Methods and Results Nonsynonymous single-nucleotide variants (nsSNVs) were ascertained using whole genome sequencing from familial cases of HCM (n=56) or DCM (n=70) and correlated with echocardiographic information. Focusing on nsSNVs in 102 genes linked to inherited cardiomyopathies, we correlated the number of nsSNVs per person with left ventricular measurements. Principal component analysis and generalized linear models were applied to identify the probability of cardiomyopathy type as it related to the number of nsSNVs in cardiomyopathy genes. The probability of having DCM significantly increased as the number of cardiomyopathy gene nsSNVs per person increased. The increase in nsSNVs in cardiomyopathy genes significantly associated with reduced left ventricular ejection fraction and increased left ventricular diameter for individuals carrying a DCM diagnosis, but not for those with HCM. Resampling was used to identify genes with aberrant cumulative allele frequencies, identifying potential modifier genes for cardiomyopathy. Conclusions Participants with DCM had more nsSNVs per person in cardiomyopathy genes than participants with HCM. The nsSNV burden in cardiomyopathy genes did not correlate with the probability or manifestation of left ventricular measures in HCM. These findings support the concept that increased variation in cardiomyopathy genes creates a genetic background that predisposes to DCM and increased disease severity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174318PMC
http://dx.doi.org/10.1161/JAHA.120.019944DOI Listing

Publication Analysis

Top Keywords

cardiomyopathy genes
20
left ventricular
16
cardiomyopathy
12
nssnvs person
12
dilated cardiomyopathy
8
hypertrophic cardiomyopathy
8
inherited cardiomyopathies
8
genes
8
number nssnvs
8
nssnvs cardiomyopathy
8

Similar Publications

Background: Sphericity is a measurement of how closely an object approximates a globe. The sphericity of the blood pool of the left ventricle (LV), is an emerging measure linked to myocardial dysfunction.

Methods: Video-based deep learning models were trained for semantic segmentation (pixel labeling) in cardiac magnetic resonance imaging in 84,327 UK Biobank participants.

View Article and Find Full Text PDF

Deep Learning-Driven Proteomics Analysis for Gene Annotation in the Renin-Angiotensin System.

Eur J Pharmacol

September 2025

Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, 70112, USA; Department of Pharmacology & Experimental Therapeutics, New Orleans, LA, 70112 USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA. Electronic addr

The renin-angiotensin system (RAS) is central to cardiovascular diseases such as hypertension and cardiomyopathy, yet the functions of many RAS genes remain unclear. This study developed a multi-label deep learning model to systematically annotate RAS gene functions and elucidate their roles in biological pathways. A total of 39,463 RAS-related publications from PubMed and PMC were processed into text format.

View Article and Find Full Text PDF

Aims: Protein glycosylation regulated by glycosyltransferases is an important type of post-translational modification. The role of the glycosyltransferase genes (GTGs) in heart failure (HF) remains unclear and requires further investigation.

Methods: Differential expression analysis was performed on the transverse aortic constriction (TAC)-related dataset GSE36074 to screen out the differentially expressed GTGs.

View Article and Find Full Text PDF

Pathogenic Cardiomyopathy-Associated Gene Variants and Prognosis in Atrial Fibrillation: Results in 18,000 Clinical Trial Participants.

J Am Coll Cardiol

September 2025

Thrombolysis in Myocardial Infarction Study Group, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA. Electronic address:

Background: Genetic variants in cardiomyopathy genes are associated with risk of atrial fibrillation (AF), although data on clinical outcomes for AF patients with such variants remain sparse.

Objectives: We aimed to study the prognostic implication of rare cardiomyopathy-associated pathogenic variants (CMP-PLP) in AF patients from large, well-phenotyped clinical trials.

Methods: CMP-PLP carriers were identified using exome sequencing in 5 multinational trials from the Thrombolysis in Myocardial Infarction study group (ENGAGE AF, FOURIER, SAVOR, PEGASUS, and DECLARE), with replication in the EAST-AFNET-4 trial.

View Article and Find Full Text PDF

Introduction: Cardiac arrhythmia frequently co-presents with structural abnormalities such as cardiomyopathy and myocardial fibrosis, creating a bidirectional relationship where electrical disturbances and structural remodeling exacerbate each other. Current genetic studies focus on ion channel variants, which explain part of the etiology. Molecular mechanisms underlying arrhythmias pathogenesis and its progression warrant further investigation.

View Article and Find Full Text PDF