Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: CKLF like MARVEL transmembrane domain containing 6 (CMTM6) has been associated with the development in many kinds of cancers. However, the roles of CMTM6 in hepatocellular carcinoma (HCC) are largely unknown. Thus, the present study aimed to investigate the function of CMTM6 in HCC.

Methods: We analysed CMTM6 levels and functions using human HCC cell lines, paired HCC and adjacent non-tumorous tissues, and a tissue microarray. CMTM6 expression was silenced using short hairpin RNAs and its was overexpressed from a lentivirus vector. CMTM6 mRNA and protein levels were determined using quantitative real-time reverse transcription PCR and western blotting, respectively. Proliferation, colony formation, migration, and invasion were assessed using a Cell counting kit-8, colony formation, wound-healing, and Matrigel invasion assays, respectively. Immunohistochemistry was used to score the expression of CMTM6 in tissue samples. The localization and binding partners of CMTM6 were investigated using immunofluorescence and coimmunoprecipitation experiments, respectively. A mouse xenograft model was used for in vivo studies.

Results: Compared with that in adjacent, non-cancerous tissue, Here, CMTM6 levels were increased in HCC tissue samples. Silencing of CMTM6 suppressed the proliferation, migration, and invasion of HCC cells. Conversely, CMTM6 overexpression enhanced HCC cell invasion, migration, and proliferation. Mechanistically, CMTM6 physically interacts with and stabilizes vimentin, thus inducing epithelial-mesenchymal transition (EMT), which promotes proliferation, migration and invasion. Importantly, in HCC tissues, CMTM6 expression correlated positively with vimentin levels. Poor prognosis of HCC was associated significantly with higher CMTM6 expression.

Conclusions: CMTM6 has an important function in HCC proliferation, migration, and invasion, via its interaction with and stabilization of vimentin. CMTM6 might represent a potential biomarker and therapeutic target to treat HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989033PMC
http://dx.doi.org/10.1186/s12967-021-02787-5DOI Listing

Publication Analysis

Top Keywords

migration invasion
20
cmtm6
17
proliferation migration
12
hcc
10
hepatocellular carcinoma
8
cmtm6 levels
8
hcc cell
8
cmtm6 expression
8
colony formation
8
tissue samples
8

Similar Publications

Integrins from extracellular vesicles as players in tumor microenvironment and metastasis.

Cancer Metastasis Rev

September 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-Sur-Yvette, 91198, France.

Integrins constitute a large and diverse family of cell adhesion molecules that play essential roles in regulating tumor cell differentiation, migration, proliferation, and neovascularization. Tumor cell-derived exosomes, a subtype of extracellular vesicles, are enriched with integrins that reflect their cells of origin. These exosomal integrins can promote extracellular matrix remodeling, immune suppression, and vascular remodeling and are closely linked to tumor progression and metastasis, acting as pivotal players in mediating organ-specific metastasis.

View Article and Find Full Text PDF

Novel role of MKRN2 in regulating tumor growth through host microenvironment and macrophage M1 to M2 switch.

Cancer Lett

September 2025

State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Tianjian Laboratory of Advanced Biomedical Sciences, Department of Radiology, Department of Clinical Research and Translational Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou,

The tumor microenvironment (TME) plays a pivotal role in cancer progression, though the molecular regulators governing its immunosuppressive properties remain incompletely characterized. In this study, we identify Makorin-2 (MKRN2) as a novel modulator of TME remodeling through integrated analyses of genetically engineered mouse models and human clinical data. Utilizing MKRN2 knockout mice, we observed significantly accelerated tumor growth compared to wild-type control, which was associated with profound alterations in immune cell composition, especially M2 macrophages.

View Article and Find Full Text PDF

Single-cell and spatial transcriptomics identify dihydrolipoic acid succinyltransferase as a promoter of tumor invasion via vascular pathways in cutaneous melanoma.

Int J Biol Macromol

September 2025

School of Life Sciences, Anhui Medical University, Hefei, 230032, China; Translational Research Institute of Henan Provincial People's Hospital, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metaboli

Melanoma is the most aggressive and lethal form of skin cancer, posing significant challenges for prognosis assessment and treatment. Recently, metabolic reprogramming and epigenetic regulation have gained attention for their roles in cancer progression. The role of the key metabolic enzyme dihydrolipoic acid succinyltransferase (DLST) in cancer is currently unclear.

View Article and Find Full Text PDF

Circ_IGF2BP1/miR-885-3p/TK1 axis regulates the malignant phenotype and chemotherapeutic resistance of lung adenocarcinoma cells via DNA damage and apoptosis.

Int J Biol Macromol

September 2025

Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China; The Public Experimental Center of Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, 563000, Guizhou, China. Electronic address: kexixian@z

Chemotherapy resistance in lung adenocarcinoma (LUAD) limits clinical efficacy. In this study, we first established circ_IGF2BP1 knockdown models in LUAD cells (A549 and H1299). Using dual-luciferase reporter assays, functional analyses, and miR-885-3p rescue experiments, we demonstrated that circ_IGF2BP1 promotes LUAD cell proliferation, migration, and invasion by directly targeting miR-885-3p.

View Article and Find Full Text PDF

Tumor-associated neutrophils promote breast cancer progression via RLN2/RXFP1-C6orf99-STAT3 axis.

Int Immunopharmacol

September 2025

Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, PR China; Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, PR China. Electronic address:

Tumor-associated neutrophils (TANs) play a critical role in breast cancer progression. This study demonstrated that high CD66b TANs infiltration correlated with poor disease-free survival (DFS) and promoted proliferation, migration, and invasion of breast cancer cells in vitro. Conversely, the immune-related long non-coding RNA C6orf99 was downregulated in breast cancer and associated with favorable DFS.

View Article and Find Full Text PDF