98%
921
2 minutes
20
Background And Purpose: Predicting outcomes is challenging in rare cancers. Single-institutional datasets are often small and multi-institutional data sharing is complex. Distributed learning allows machine learning models to use data from multiple institutions without exchanging individual patient-level data. We demonstrate this technique in a proof-of-concept study of anal cancer patients treated with chemoradiotherapy across multiple European countries.
Materials And Methods: atomCAT is a three-centre collaboration between Leeds Cancer Centre (UK), MAASTRO Clinic (The Netherlands) and Oslo University Hospital (Norway). We trained and validated a Cox proportional hazards regression model in a distributed fashion using data from 281 patients treated with radical, conformal chemoradiotherapy for anal cancer in three institutions. Our primary endpoint was overall survival. We selected disease stage, sex, age, primary tumour size, and planned radiotherapy dose (in EQD2) a priori as predictor variables.
Results: The Cox regression model trained across all three centres found worse overall survival for high risk disease stage (HR = 2.02), male sex (HR = 3.06), older age (HR = 1.33 per 10 years), larger primary tumour volume (HR = 1.05 per 10 cm) and lower radiotherapy dose (HR = 1.20 per 5 Gy). A mean concordance index of 0.72 was achieved during validation, with limited variation between centres (Leeds = 0.72, MAASTRO = 0.74, Oslo = 0.70). The global model performed well for risk stratification for two out of three centres.
Conclusions: Using distributed learning, we accessed and analysed one of the largest available multi-institutional cohorts of anal cancer patients treated with modern radiotherapy techniques. This demonstrates the value of distributed learning in outcome modelling for rare cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2021.03.013 | DOI Listing |
Risk Anal
September 2025
School of Public Policy and Administration, Chongqing University, Chongqing, China.
Climate change is causing a significant increase in the number of compound extreme events that pose significantly greater threats to public safety. Chongqing is a megacity in southwestern China that took the brunt of temporally compounding events (TCEs) in the summer of 2022. We developed an approach based on the Intergovernmental Panel on Climate Change (IPCC) risk framework to assess the public health risks posed by TCEs.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States.
Reactive oxygen species (ROS) are responsible for the oxidative truncation of polyunsaturated fatty acids (PUFAs). The products of these reactions have been implicated in many diseases such as cancer and atherosclerosis. As increasing attention is directed toward these oxidized phospholipids (oxPLs), higher throughput methods are needed to examine interactions between oxPLs and scavenger receptors in the immune system.
View Article and Find Full Text PDFPersistent high-risk human papillomavirus (hHPV) infection, especially HPV-16, plays a central role in the development of high-grade squamous intraepithelial lesions (HSIL). This study aimed to evaluate the performance of co-testing (cytology and hHPV detection) in a real-world cohort of men who have sex with men (MSM) and transgender women (TW) living with HIV. We conducted a prospective study (2017-2023) at a tertiary care center in Spain.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
Membrane receptor recognition is a specific biotargeting strategy for disease diagnosis and treatment, but it suffers from insufficient receptor expression levels. Hydrophobic interaction-based membrane anchoring strategy allows high anchoring density, but it lacks specificity. In this study, we present a DNA nanocage-based artificial receptor generator (DNARG) that combines the advantages of high specificity of receptor recognition and high density of hydrophobic membrane anchoring.
View Article and Find Full Text PDFDis Colon Rectum
September 2025
Department of Surgery, Oregon Health & Science University, Portland, Oregon.
Background: Anal squamous cell cancer incidence has risen 2.2% each year over the past decade. Current screening includes anal cytology and high-resolution anoscopy but is burdened with sampling error and patient discomfort.
View Article and Find Full Text PDF