98%
921
2 minutes
20
Diffuse midline gliomas (DMGs) are incurable pediatric tumors with extraordinarily limited treatment options. Decades of clinical trials combining conventional chemotherapies with radiation therapy have failed to improve these outcomes, demonstrating the need to identify and validate druggable biologic targets within this disease. NTRK1/2/3 fusions are found in a broad range of pediatric cancers, including high-grade gliomas and a subset of DMGs. Phase 1/2 studies of TRK inhibitors have demonstrated good tolerability, effective CNS penetration, and promising objective responses across all patients with TRK fusion-positive cancers, but their use has not been explored in TRK fusion-positive DMG. Here, we report 3 cases of NTRK fusions co-occurring within H3K27M-positive pontine diffuse midline gliomas. We employ a combination of single-cell and bulk transcriptome sequencing from TRK fusion-positive DMG to describe the phenotypic consequences of this co-occurring alteration. We then use ex vivo short-culture assays to evaluate the potential response to TRK inhibition in this disease. Together, these data highlight the importance of routine molecular characterization of these highly aggressive tumors and identify a small subset of patients that may benefit from currently available targeted therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985828 | PMC |
http://dx.doi.org/10.1093/jnen/nlab016 | DOI Listing |
Oncogene
September 2025
Division of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, CA, USA.
It has become evident from decades of clinical trials that multimodal therapeutic approaches with focus on cell intrinsic and microenvironmental cues are needed to improve understanding and treat the rare, inoperable, and ultimately fatal diffuse intrinsic pontine glioma (DIPG), now categorized as a diffuse midline glioma. In this study we report the development and characterization of an in vitro system utilizing 3D Tumor Tissue Analogs (TTA), designed to replicate the intricate DIPG microenvironment. The innate ability of fluorescently labeled human brain endothelial cells, microglia, and patient-derived DIPG cell lines to self-assemble has been exploited to generate multicellular 3D TTAs that mimic tissue-like microstructures, enabling an in- depth exploration of the spatio-temporal dynamics between neoplastic and stromal cells.
View Article and Find Full Text PDFJ Immunother Cancer
September 2025
Department of Pediatrics, Center for Childhood Cancer and Blood Disorders, Division of Heme/Onc and Bone Marrow Transplant, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
Background: Diffuse midline glioma (DMG) and glioblastoma (GBM) are aggressive brain tumors with limited treatment options. Macrophage phagocytosis is a complex, tightly regulated process governed by competing pro-phagocytic and anti-phagocytic signals. CD47-SIRPα signaling inhibits macrophage activity, while radiotherapy (RT) can enhance tumor immunogenicity.
View Article and Find Full Text PDFNeuron
September 2025
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Electronic address:
In the central nervous system (CNS), where neuronal activity promotes brain development and plasticity, including glial precursor cell proliferation, the activity of neurons robustly drives the initiation, growth, invasion, treatment resistance, and progression of brain cancers such as adult and pediatric hemispheric high-grade gliomas, diffuse midline gliomas such as diffuse intrinsic pontine glioma (DIPG), and pediatric low-grade optic gliomas. The underlying mechanisms involve both neuronal-activity-regulated paracrine signaling and direct electrochemical communication through neuron-to-glioma synapses. Neuronal inputs to tumors can then be propagated through connections between cancer cells.
View Article and Find Full Text PDFAbnormal blood vessels limit the delivery and function of endogenous T cells as well as adoptively transferred Chimeric Antigen Receptor (CAR)-T cells in the tumor microenvironment (TME). We recently showed that vascular normalization using anti-VEGF therapy can overcome these challenges and improve the outcome of CAR-T therapy in glioblastoma models in mice. Here, we developed a physiologically based pharmacokinetic model to simulate the dynamics of both adoptively transferred CAR-T cells and endogenous immune cells in solid tumors following vascular normalization.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
September 2025
Department of Neurosciences and Reproductive and Odontostomatological Sciences, Division of Neurosurgery, University of Napoli "Federico II," Naples, Italy.
Background: Brainstem cavernous malformations (BSCMs) are rare vascular lesions, most frequently located in the pons. Their surgical management is particularly demanding due to the dense concentration within the brainstem of eloquent neural pathways and nuclei. Among various surgical routes, the endoscopic endonasal transclival approach (EETA) has been established as a valuable option for treating selected ventrally located lesions.
View Article and Find Full Text PDF