Application of long-wave near infrared hyperspectral imaging for determination of moisture content of single maize seed.

Spectrochim Acta A Mol Biomol Spectrosc

Beijing Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China; College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China. Electronic address:

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Moisture content (MC) is one of the most important factors for assessment of seed quality. However, the accurate detection of MC in single seed is very difficult. In this study, single maize seed was used as research object. A long-wave near infrared (LWNIR) hyperspectral imaging system was developed for acquiring reflectance images of the embryo and endosperm side of maize seed in the spectral range of 930-2548 nm, and the mixed spectra were extracted from both side of maize seeds. Then, Full-spectrum models were established and compared based on different types of spectra. It showed that models established based on spectra of the embryo side and mixed spectra obtained better performance than the endosperm side. Next, a combination of competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA) was proposed to select the most effective wavelengths from full-spectrum data. In order to explore the stableness of wavelength selection algorithm, these methods were used for 200 independent experiments based on embryo side and mixed spectra, respectively. Each selection result was used as input of partial least squares regression (PLSR) and least squares support vector machine (LS-SVM) to build calibration models for determining the MC of single maize seed. Results indicated that the CARS-SPA-LS-SVM model established with mixed spectra was optimal for MC prediction in all models by considering the accuracy, stableness and complexity of models. The prediction accuracy of CARS-SPA-LS-SVM model is R = 0.9311 ± 0.0094 and RMSEP = 1.2131 ± 0.0702 in 200 independent assessment. The overall study revealed that the long-wave near infrared hyperspectral imaging can be used to non-invasively and fast measure the MC in single maize seed and a robust and accurate model could be established based on CARS-SPA-LS-SVM method coupled with mixed spectral. These results can provide a useful reference for assessment of other internal quality attributes (such as starch content) of single maize seed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.119666DOI Listing

Publication Analysis

Top Keywords

maize seed
24
single maize
20
mixed spectra
16
long-wave infrared
12
hyperspectral imaging
12
infrared hyperspectral
8
moisture content
8
content single
8
seed
8
endosperm side
8

Similar Publications

Plasma membrane maize Gγ protein MGG4 positively regulates seed size mainly through influencing kernel width.

Plant Cell Rep

September 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.

View Article and Find Full Text PDF

Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.

View Article and Find Full Text PDF

CRINKLY4: Multifaceted Roles Beyond Epidermal Cell Differentiation in Plant Development?

Plant Cell Environ

September 2025

Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Scienc

Receptor-like kinases (RLKs) play essential roles in plant growth and development. CRINKLY4 (CR4), one of the first reported RLKs in plants, is a well-known regulator of epidermal cell differentiation during leaf and seed development in maize. Within the last four decades, the functional landscape of CR4 has emerged across diverse developmental contexts and species, including dicots (e.

View Article and Find Full Text PDF

Optimizing maize late wilt disease management: A comparative assessment of bacterial biocontrol and Azoxystrobin alone and in combination.

Pestic Biochem Physiol

November 2025

Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.

Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.

View Article and Find Full Text PDF

Sorghum is one of the critical food security crops, particularly in moisture-stressed areas of Ethiopia. However, in the absence of a well-organized formal seed system, public research institutions have continued to promote and disseminate improved sorghum varieties to encourage adoption. On the other hand, the lack of evidence on smallholder farmers' demand for improved varieties has discouraged the seed industry from investing in marginalized crops, like sorghum, in contrast to more commercialized crops such as wheat and maize.

View Article and Find Full Text PDF