[Characteristics of Cadmium Enrichment and Pollution Evaluation of a Soil-Crop System in a Typical Karst Area].

Huan Jing Ke Xue

Southeast Sichuan Geological Group, Chongqing Bureau of Geology and Minerals Exploration, Chongqing 400038, China.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to study the characteristics and factors influencing Cd accumulation in surface soils and crops in karst areas, and to provide a theoretical basis for safe land use, 360 surface soil samples, 7 deep soil samples, and 85 rice samples were collected from central Qianjiang District, Chongqing. The samples and 73 corn samples (corresponding to root-zone soil samples), were analysed to determine the content of Cd, TFe O, Mn, organic matter (C), Se, and pH. Based on geostatistical analyses, the spatial distribution and Cd enrichment of the surface soils were determined and a safety evaluation for the soil and crops was carried out. The results showed that the spatial distribution of Cd in the surface soil was uneven, with the surface layer showing significant enrichment. This pattern was controlled by the soil parent material and human activities. The enrichment of surface layer was mainly affected by iron manganese oxides and organic matter (C). Soil Cd was mainly found at 'non-polluted' and 'lightly polluted' levels, although some areas present strong ecological risks. The main contaminated area occurs in association with Permian strata, demonstrating a geological control on soil Cd pollution. Slight-to-severe Cd pollution was identified in bulk crops; the recommended daily consumption limit for rice is 0.87 kg·d and corn is 1.53 kg·d. The bioavailability of Cd is affected by soil pH and Se content. Under acidic conditions, Cd bioavailability is high, and crops in areas with high soil Se are safer. It is recommended that crops with low Cd accumulation are planted in the Permian outcrop area of Shuitian Township, or alternatively, soil pH should be adjusted to control the risk of Cd pollution and ensure safe land use. In addition, planting crops in areas with high soil Se content is preferable.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202008085DOI Listing

Publication Analysis

Top Keywords

soil
12
soil samples
12
surface soils
8
safe land
8
surface soil
8
organic matter
8
spatial distribution
8
enrichment surface
8
surface layer
8
soil content
8

Similar Publications

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

Soil washing with surfactants is a promising technique for remediating petroleum hydrocarbon-contaminated soils. This study evaluates a biosurfactant extracted from Eichhornia crassipes (water hyacinth), an abundant aquatic weed in Thailand, using ultrasound-assisted extraction for diesel-contaminated soil remediation. The biosurfactant extract (Extract WH) was characterized for its surface tension reduction, critical micelle concentration (CMC), emulsification capacity with diesel, and phytotoxicity.

View Article and Find Full Text PDF

Disseminated Mycobacterium simiae infection causing rhinosinusitis in a severely immunocompromised patient.

Int J Infect Dis

September 2025

SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa; Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontei

Background: Mycobacterium simiae is a slow-growing environmental nontuberculous mycobacterium (NTM), commonly isolated from soil and water. M. simiae is not known to transmit zoonotically or via human-to-human contact; infection is presumed to occur through direct environmental exposure.

View Article and Find Full Text PDF

Novel Thermal Modification of Phosphate Tailings for Enhanced Heavy Metals Immobilization in Soil.

Environ Res

September 2025

State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:

Recent interest in amendments derived from industrial by-products has highlighted their potential for both resource recycling and heavy metal remediation. Phosphate tailings (PT), primarily dolomite-based solid waste with low utilization rates, offer a promising yet underexplored solution. This study pioneers the thermal modification of PT into a novel amendment, thermally modified phosphate tailings (TPT), to assess its adsorption performance, underlying mechanisms, and effectiveness in immobilizing heavy metals in soils.

View Article and Find Full Text PDF

Effects of chicken manure-derived black soldier fly organic fertilizer on soil carbon and nitrogen cycling: insights from metagenomic and microbial network analysis.

Environ Res

September 2025

National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address: cmm114@mail

Black soldier fly (BSF) organic fertilizer is known to enhance soil fertility and promote plant growth. However, its effects on soil carbon (C) and nitrogen (N) cycling remains unclear. In this study, we established a BSF chicken manure bioconversion system to produce BSF organic fertilizer and investigate its impacts on soil C and N cycling, as well as microbial ecological networks through metagenomic analysis.

View Article and Find Full Text PDF