[Potential of Arbuscular Mycorrhizal Fungi, Biochar, and Combined Amendment on Sandy Soil Improvement Driven by Microbial Community].

Huan Jing Ke Xue

Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sandy soils are considered as a significant transition phase to desertification. The effective recovery of sandy soils is of great significance to mitigate the desertification process. Some studies have shown that arbuscular mycorrhizal (AM) fungi and biochar improved the sandy soil, but there have been very few studies regarding the combined effects of AM fungi and biochar amendments on sandy soil improvement. Additionally, the roles of the bacterial and fungal community during the process of sandy soil improvement remain unclear. A greenhouse pot experiment with four treatments, including a control (CK, no amendment), single AM fungi-assisted amendment (RI), single biochar amendment (BC), and combined amendment (BC_RI, biochar plus AM fungi), was set up. This study investigated the effects of different amendment methods on the mycorrhizal colonization, biomass, nutrient (N, P, K, Ca, and Mg) content, soil organic carbon, soil nutrient (TN, TP, and TK) content, and soil water-stable aggregate composition. High throughput sequencing technology was used to investigate the roles of the bacterial and fungal communities during the process of sandy soil improvement. Combined with multiple analysis methods, the improvement mechanisms of different amendment methods were explored. The aim was to provide basic data and scientific basics for reasonably and effectively improving sandy soils. The results indicated that a significant mycorrhiza colonization was observed in the inoculation (RI and BC_RI) treatments, but there was no substantial difference in the mycorrhiza colonization with the RI and BC_RI. Compared with the CK, the shoot biomass and shoot element (N, K, Ca, and Mg) contents were significantly increased in the RI, and the shoot element (N, P, K, Ca, and Mg) contents were significantly increased in the BC and BC_RI; compared with the RI and BC, the root biomass and the root element (P, K, Ca, and Mg) contents were significantly increased in the BC_RI. Compared with the CK, the soil organic carbon contents were significantly increased in the BC and BC_RI, the soil TN contents were significantly increased by 152.54%, and the soil TP and TK contents were significantly decreased by 12.5% and 18.8%, respectively. The proportion of soil aggregates with particle sizes of 0.25-0.05 mm was the highest in each treatment, and the large particle size (>0.25 mm) soil aggregate was significantly increased in the BC_RI. Compared with the CK, the Sobs and Shannon indices of the bacterial/fungal community were significantly decreased in the RI and BC_RI. There was a difference in the microbial community compositions and abundance in the various treatments. The results of the RDA and network analysis were as follows:the effects of AM fungi, biochar, and combined amendment on the soil environment and microbial community structure were significant; in the different amendment treatments, the relationship of the microbial molecular ecological network was significantly changed, and the composition of the core species varied; compared with the RI, there was a higher network connection degree and a richer core species composition in the BC and BC_RI; moreover, the essential role of was weaken and the core roles of the other microorganisms (especially bacterial species) were enhanced under the combined effects of biochar and AM fungi. The SEM results demonstrated that the application of AM fungi and biochar could directly affect the bacteria/fungi community structure, and further affect the plant growth and soil properties. The differences in the microbial community structure (especially the change in the microbial interaction) were the key driving factors that led to the difference in the soil improvement effectiveness. In summary, the effects of the different amendment methods on the improvement effectiveness of sandy soils varied. The microbial community played key roles in the process of sandy soil improvement, and there were potential advantages and applications in accelerating the ecological restoration of sandy soils under the combined AM fungi and biochar amendment.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.202008154DOI Listing

Publication Analysis

Top Keywords

fungi biochar
24
sandy soil
24
soil improvement
24
sandy soils
20
contents increased
20
soil
17
bc_ri compared
16
increased bc_ri
16
microbial community
16
combined amendment
12

Similar Publications

Biochar amendment improves Morchella sextelata yield by enhancing soil NO-N availability and increasing the diversity while decreasing the absolute abundance of fungal community.

Microbiol Res

August 2025

Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China; The National Key Laboratory of Ecological Security and Sustainable Development in Arid Region, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Black morel (Morchella sextelata) is widely regarded as a post-fire mushroom because of its prolific fruiting in post-fire forest soils enriched with charcoal. Intriguingly, artificial cultivation of M. sextelata often incorporates biochar as a soil amendment to enhance yield, although the underlying physicochemical and ecological mechanisms remain unclear.

View Article and Find Full Text PDF

Maize (Zea mays L.), a globally significant cereal of the Poaceae family, plays a pivotal role in food and feed security. However, its productivity is increasingly threatened by climate-induced drought stress and low organic matter content of soil, particularly in arid and semi-arid regions.

View Article and Find Full Text PDF

Climate change and intensive farming have caused soil degradation and decreased organic carbon stocks. Current research focuses on restoring soil fertility, often through organic amendments. Biosolids stabilized in constructed wetlands (CWs) may serve as an applicable organic amendment, although limited literature exists on their properties.

View Article and Find Full Text PDF

Multidimensional mechanisms of biochar in mitigating Fe(III) stress in anammox consortia.

Environ Res

August 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR

The stress of high-concentration Fe(III) severely restricts the anaerobic ammonium oxidation (anammox) engineering application. Herein, we systematically investigated the mitigating mechanisms of biochar-mediated anammox system against Fe(III) stress by constructing a batch reaction system with a gradient Fe(III) concentration (0-100 mg/L). The results showed that biochar notably mitigated Fe(III) toxicity by synergizing multiple pathways, such as physical adsorption, chemical reduction, and biological sheltering.

View Article and Find Full Text PDF

Wheat (Triticum aestivum) is a staple food crop providing essential nutrition to global population. However, water scarcity and increasing drought stress, because of climate change, threaten its productivity. Oxidative stress increases the production of reactive oxygen species (ROS) due to drought which damages the plant cellular metabolism.

View Article and Find Full Text PDF