98%
921
2 minutes
20
Zwitterionic per- and polyfluoroalkyl substances (PFASs) used in aqueous film-forming foams (AFFFs) could face diverse environmental fates once released at military bases, airports, fire-training areas, and accidental release sites. Here, we studied for the first time the transformation potential of four electrochemical fluorination (ECF)-based PFAS zwitterions (two carboxyl betaines and two tertiary amines) in aerobic soils. The two perfluoroalkyl sulfonamide derivatives were precursors to perfluorooctanesulfonate (PFOS), while the amide derivatives were precursors to perfluorooctane carboxylate (PFOA). These zwitterions and four other previously reported zwitterions or cations were compared for their transformation pathways and kinetics. Structural differences, especially the nitrogen head groups, largely influenced the persistence of these compounds in aerobic soils. The perfluoroalkyl sulfonamide-based compounds showed higher microbial stability than the corresponding perfluoroalkyl amide-based ones. Their stability in aerobic soils is ranked based on the magnitude of DT (time for 50% of substance to disappear): quaternary ammonium ≈ carboxyl betaine ≫ tertiary amine > amine oxide. The PFASs containing quaternary ammonium or betaine groups showed high stability in soils, with the longest DT likely to be years or decades, while those with tertiary amine or amine oxide groups showed DT of weeks or months. These eight ECF-based precursors provide insights into the degradation pathways and persistence in surface soils of other perfluoroalkyl cations and zwitterions present in AFFFs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.0c05811 | DOI Listing |
Curr Microbiol
September 2025
Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.
A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.
A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2025
State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
The family , encompassing the genus and related taxa, comprises diverse Gram-negative, aerobic, rod-shaped bacteria found in varied habitats, including air, soil, water and glaciers. Recent genomic-based taxonomic revisions have reclassified some species into new genera, such as and , due to polyphyletic relationships within the family . Certain species are known for forming biofilms or functioning as aerobic anoxygenic phototrophic bacteria, traits that enhance resilience in extreme environments like the cryosphere.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Ecological Modelling Laboratory, Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada. Electronic address:
Agriculture intensification represents an essential strategy to ensure food security for the growing human population, but it also poses considerable environmental concerns. Climate change and associated projections of an increased frequency of extreme precipitation and runoff events may amplify nutrient dynamics along the watershed-lake continuum, and could further exacerbate the poor water quality conditions downstream. Identifying hotspot locations with higher propensity for sediment and nutrient export and designing effective mitigation measures at the source is more critical than ever.
View Article and Find Full Text PDF