Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early studies in transgenic mouse lines have shown that the coexpression of endogenous murine prion protein (PrP) and transgenic PrP from another species either inhibits or allows the propagation of prions, depending on the infecting prion strain and interacting protein species. The way whereby this phenomenon, so-called "interference," is modulated remains to be determined. In this study, different transgenic mouse lines were crossbred to produce mice coexpressing bovine and porcine PrP, bovine and murine PrP, or murine and porcine PrP These animals and their respective hemizygous controls were inoculated with several prion strains from different sources (cattle, mice, and pigs) to examine the effects of the simultaneous presence of PrP from two different species. Our results indicate interference with the infection process, manifested as extended survival times and reduced attack rates. The interference with the infectious process was reduced or absent when the potentiality interfering PrP species was efficiently converted by the inoculated agent. However, the propagation of the endogenous murine PrP was favored, allowing us to speculate that host-specific factors may disturb the interference caused by the coexpression of an exogenous second PrP Prion propagation can be interfered with by the expression of a second prion protein in the host. In the present study, we investigated prion propagation in a host expressing two different prion protein genes. Our findings indicate that the ability of the second prion protein to interfere with prion propagation is related to the transmissibility of the prion in the host expressing only the interfering prion protein. The interference detected occurs in a prion strain-dependent manner. Interestingly, a bias favoring the propagation of the murine PrP allele has been observed. These results open the door to future studies in order to determine the role of host factors other than the PrP amino acid sequence in the interference in prion propagation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8092304PMC
http://dx.doi.org/10.1128/mBio.03508-20DOI Listing

Publication Analysis

Top Keywords

prion protein
20
prion propagation
16
prion
14
prp
12
prp species
12
murine prp
12
interference prion
8
interfering prp
8
host-specific factors
8
transgenic mouse
8

Similar Publications

Salicylic acid (SA), a long-characterized defense hormone, is increasingly recognized for its roles in plant growth and development. However, its involvement in mediating plant growth responses to environmental cues remains less understood. Here, we show that SA negatively affects thermomorphogenic growth in Arabidopsis thaliana.

View Article and Find Full Text PDF

Aggregates of the protein α-synuclein may initially form in the gut before propagating to the brain in Parkinson's disease. Indeed, our prior work supports that enteroendocrine cells, specialized intestinal epithelial cells, could play a key role in the development of this disease. Enteroendocrine cells natively express α-synuclein and synapse with enteric neurons as well as the vagus nerve.

View Article and Find Full Text PDF

In most animals, oocyte polarity establishes the embryonic body plan by asymmetrically localizing axis-determining transcripts. These transcripts first localize in and zebrafish oocytes to the Balbiani body (Bb), a large membrane-less organelle conserved from insects to humans. The Bb is transient, disassembling and anchoring at one pole the axis-determining transcripts that establish the vegetal pole of the oocyte.

View Article and Find Full Text PDF

Emerging roles for innate and adaptive immunity in tauopathies.

Cell Rep

September 2025

Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22908, USA; Brain Immunology and Glia Graduate Training Program, University of Virginia, Charlott

Tauopathies encompass a large majority of dementia diagnoses and are characterized by toxic neuronal or glial inclusions of the microtubule-associated protein tau. Tau has a high propensity to induce prion-like spreading throughout the brain via a variety of mechanisms, making tauopathy a rapid and lethal form of neurodegeneration that currently lacks an effective therapy or cure. Tau aggregation and neuronal loss associated with this pathology are accompanied by robust neuroinflammation.

View Article and Find Full Text PDF

Cellular prion protein (PrP) is a glycoprotein tethered to the plasma membrane via a GPI-anchor, and it plays a crucial role in prion diseases by undergoing conformational change to PrP. To generate a knock-in (KI) mouse model expressing bank vole PrP (BVPrP), a KI targeting construct was designed. However, a Prnp gene sequence that encodes PrP lacking seven C-terminal amino acid residues of the GPI-anchoring signal sequence (GPI-SS) was unintentionally introduced into the construct.

View Article and Find Full Text PDF