Mechanics of penta-graphene with vacancy defects under large amplitude tensile and shear loading.

Nanotechnology

Faculty of Civil Engineering and Mechanics, Jiangsu University, No. 301 Xuefu Road, Zhenjiang, Jiangsu 210013, People's Republic of China.

Published: April 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Penta-graphene is a new two-dimensional metastable carbon allotrope composed entirely of carbon pentagons with unique electronic and mechanical properties. In this work we evaluate the mechanical properties of new classes of defective penta-graphene (DPG) subjected to tensile and shear loading by using molecular dynamics simulations. The types of defects considered here are monovacancy at either 4-coordinated C1 site or 3-coordinated C2 site, and double vacancy (DV). We focus in particular on the effects of the different topologies of defects and their concentrations on the elastic constants and the nonlinear mechanics of this allotropic form of carbon. The results indicate that DPG has a plastic behavior similar to pristine penta-graphene, which is caused by the irreversible pentagon-to-polygon structural transformation occurring during tensile and shear loading. The tensile and shear moduli decrease linearly with the concentration of defects. Monotonic reductions of the tensile yield and shear stresses are also present but less pronounced, while the yield strains are unaffected. Penta-graphene with 4-coordinated and DVs feature a change of the Poisson's ratio from negative to positive when the defect concentration rises to about 3% and 6%. Temperature can trigger structural reconstruction for free-standing DPG. The critical transition temperature increases due to the vacancy defects and the defects can delay the structure transition. These findings are expected to provide important guidelines for the practical applications of penta-graphene based micro/nano electromechanical systems.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abee4aDOI Listing

Publication Analysis

Top Keywords

tensile shear
16
shear loading
12
vacancy defects
8
mechanical properties
8
defects
6
tensile
5
shear
5
penta-graphene
5
mechanics penta-graphene
4
penta-graphene vacancy
4

Similar Publications

The design of carbon allotropes that simultaneously exhibit mechanical robustness and quantum functionalities remains a longstanding challenge. Here, we report a comprehensive first-principles study of cT16, a three-dimensional sp-hybridized carbon network with topologically interlinked graphene-like sheets. The structure features high ideal tensile and shear strengths, with pronounced anisotropy arising from strain-induced bond rehybridization and interlayer slipping mechanisms.

View Article and Find Full Text PDF

Pterygium is a common ocular surface lesion, and postoperative recurrence remains a major challenge due to insufficient therapeutic strategies targeting fibroblast proliferation and inflammation. Fibrinogen hydrogel (Fibrin glue, FG), a bioadhesive hydrogel, is widely used in pterygium surgery to secure conjunctival autografts. However, its low adhesion often leads to graft detachment, hindering effective repair.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs)-web-like DNA structures extruded by neutrophils in response to various stimuli, including pathogens, sterile inflammation, and mechanical stress-play a dual role in immunity and disease. While NETs serve to trap and neutralize pathogens during host defense, excessive or dysregulated NET formation, known as NETosis, can amplify inflammation and contribute to thrombotic complications such as atherosclerosis and valve disease. Increasing evidence supports that NETosis is a regulated, signaling-driven process, and that mechanical forces-including shear stress, tensile force, and matrix stiffness-can act as noncanonical danger signals capable of inducing NETosis.

View Article and Find Full Text PDF

In the present study, the influence of drying temperature, mercerization, and epoxy coating on the physicochemical and mechanical properties of Colombian CFs and their interfacial adhesion with a PLA matrix were studied. CFs were extracted from the mesocarp of Cocos nucifera husks by retting. The fibers were oven-dried at two drying temperatures, 40 °C and 90 °C.

View Article and Find Full Text PDF

Processibility, Thermo-Mechanical Properties, and Radiation Hardness of Polyurethane and Silicone Resins.

Polymers (Basel)

August 2025

European Organization for Nuclear Research (CERN), Esplanade des Particules 1, 1211 Geneva, Switzerland.

Different polyurethanes (PURs) and silicone for potential use in particle accelerators and detectors have been characterized in the uncured state, after curing, and after exposure to ionizing irradiation in ambient air and in liquid helium. The viscosity evolution during processing was measured with a rheometer. Dynamic mechanical analysis (DMA) and Shore A hardness measurements were applied to detect irradiation-induced crosslinking and chain scission effects.

View Article and Find Full Text PDF