Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sophorolipids (SLs) from Candida batistae has a unique structure that contains ω-hydroxy fatty acids, which can be used as a building block in the polymer and fragrance industries. To improve the production of this industrially important SLs, we optimized the culture medium of C. batistae for the first time. Using an optimized culture medium composed of 50 g/L glucose, 50 g/L rapeseed oil, 5 g/L ammonium nitrate and 5 g/L yeast extract, SLs were produced at a concentration of 24.1 g/L in a flask culture. Sophorolipids production increased by about 19% (28.6 g/L) in a fed-batch fermentation using a 5 L fermentor. Sophorolipids production more increased by about 121% (53.2 g/L), compared with that in a flask culture, in a fed-batch fermentation using a 50 L fermentor, which was about 787% higher than that of the previously reported SLs production (6 g/L). These results indicate that a significant increase in C. batistae-derived SLs production can be achieved by optimization of the culture medium composition and fed-batch fermentation. Finally, we successfully separated and purified the SLs from the culture medium. The improved production of SLs from C. batistae in this study will help facilitate the successful development of applications for the SLs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00449-020-02493-4DOI Listing

Publication Analysis

Top Keywords

fed-batch fermentation
16
culture medium
16
sophorolipids production
12
candida batistae
8
sls
8
optimized culture
8
flask culture
8
production increased
8
sls production
8
production
7

Similar Publications

An iterative approach to statistical optimization of exopolysaccharide produced by fermentation of .

Biotechnol Rep (Amst)

September 2025

Technical University of Munich, Germany, TUM Campus Straubing for Biotechnology and Sustainability, Bioprocess Engineering, Uferstraße 53, D-94315 Straubing, Germany.

Exopolysaccharides are biopolymers with wide-ranging industrial applications. To substitute fossil-based by bio-based, biodegradable polymers, exopolysaccharide production needs to become much more efficient. Pullulan, produced by , is popular for its unique properties like film-formation, adhesiveness, biodegradability, etc.

View Article and Find Full Text PDF

Production of chondroitin by Corynebacterium glutamicum through co-utilization of glucose and xylose from corn straw.

Int J Biol Macromol

September 2025

Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China. Electronic address:

Chondroitin sulfate (CS), a biopolymer with critical applications in osteoarthritis treatment and biomedical sectors, faces production challenges due to low yields and high costs. This study established a high-yield chondroitin (the major precursor of CS) production platform in Corynebacterium glutamicum for the simultaneous utilization of glucose and xylose from corn straw hydrolysate. Firstly, through codon optimization of genes encoding chondroitin synthase (KfoC) and UDP-N-acetylglucosamine-4-epimerase (KfoA), combined with tailoring metabolic pathways and medium components for chondroitin synthesis, yielded the high-titer strain CgC25.

View Article and Find Full Text PDF

Decoupled tricarboxylic acid cycle and glycolysis of combined with acetate supply promote high-yield biosynthesis of l-homoserine.

Synth Syst Biotechnol

December 2025

School of Light Industry and Food Engineering, Guangxi University, 100 Daxue East Road, Nanning, Guangxi, 530004, China.

l-Homoserine is a valuable intermediate with broad applications in the food, pharmaceutical, and chemical industries. Although has been engineered for the efficient biosynthesis of l-homoserine, both production efficiency and glucose conversion remain suboptimal. In this study, an engineered strain capable of high-yield l-homoserine production from glucose was successfully developed.

View Article and Find Full Text PDF

Enhancing cell density and recombinant protein production through the control of acetate accumulation.

3 Biotech

September 2025

Research and Development, Biological E Limited, Plot No.1,Phase II, SP Biotech Park, Genome Valley, Shameerpet, Hyderabad, 500078 India.

is widely used in biopharmaceutical production due to its ability to grow aerobically and produce proteins intracellularly. However, the limitation of the fermentation process is acetate accumulation, a by-product of overflow metabolism during high-glucose aerobic growth, which negatively impacts cell growth and protein expression. Traditional strategies to mitigate this include genetic modifications or low-density fermentation, which have significant limitations.

View Article and Find Full Text PDF

The rising demand for natural products is accelerating research into sustainable methods for producing bio-based flavourings like ethyl butyrate. In this study, ethyl butyrate was successfully produced through the enzymatic esterification of butyric acid and ethanol, which were derived from the co-cultivation of Clostridium tyrobutyricum and Saccharomyces cerevisiae. Initial monoculture experiments with both strains were performed to investigate compromised fermentation conditions for co-cultivation.

View Article and Find Full Text PDF