Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acid tolerance of microorganisms is a desirable phenotype for many industrial fermentation applications. In , the stress response sigma factor RpoS is a promising target for engineering acid-tolerant phenotypes. However, the simple overexpression of RpoS alone is insufficient to confer these phenotypes. In this study, we show that the simultaneous overexpression of the noncoding small RNA (sRNA) DsrA and the sRNA chaperone Hfq, which act as RpoS activators, significantly increased acid tolerance in terms of cell growth under modest acidic pH, as well as cell survival upon extreme acid shock. Directed evolution of the DsrA-Hfq module further improved the acid tolerance, with the best mutants showing a 51 to 72% increase in growth performance at pH 4.5 compared with the starting strain, MG1655. Further analyses found that the improved acid tolerance of these DsrA-Hfq strains coincided with activation of genes associated with proton-consuming acid resistance system 2 (AR2), protein chaperone HdeB, and reactive oxygen species (ROS) removal in the exponential phase. This study illustrated that the fine-tuning of sRNAs and their chaperones can be a novel strategy for improving the acid tolerance of Many of the traditional studies on bacterial acid tolerance generally focused on improving cell survival under extreme-pH conditions, but cell growth under less harsh acidic conditions is more relevant to industrial applications. Under normal conditions, the general stress response sigma factor RpoS is maintained at low levels in the growth phase through a number of mechanisms. This study showed that RpoS can be activated prior to the stationary phase via engineering its activators, the sRNA DsrA and the sRNA chaperone Hfq, resulting in significantly improved cell growth at modest acidic pH. This work suggests that the sigma factors and likely other transcription factors can be retuned or retimed by manipulating the respective regulatory sRNAs along with the sufficient supply of the respective sRNA chaperones (i.e., Hfq). This provides a novel avenue for strain engineering of microbes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117753PMC
http://dx.doi.org/10.1128/AEM.02923-20DOI Listing

Publication Analysis

Top Keywords

acid tolerance
28
srna dsra
12
dsra srna
12
srna chaperone
12
chaperone hfq
12
cell growth
12
acid
9
rna srna
8
stress response
8
response sigma
8

Similar Publications

A ketogenic diet (KD) has shown promise as an adjunctive therapy for neurological and neuropsychiatric disorders, including bipolar disorder and major depressive disorder (MDD). We examined tolerance for a KD in young adults with MDD and assessed symptoms of depression and metabolic health. Students (n = 24) with a confirmed diagnosis of MDD at baseline receiving standard of care counseling and/or medication treatment were enrolled in a 10-12 week KD intervention that included partial provision of ketogenic-appropriate food items, frequent dietary counseling, and daily morning tracking of capillary R-beta-hydroxybutyrate (R-BHB).

View Article and Find Full Text PDF

α-Lipoic acid treatment alleviates chilling injury in peach fruit by regulating phenolic and cell wall metabolism.

Plant Sci

September 2025

School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, China. Electronic address:

Peaches are highly susceptible to chilling injury (CI) during cold storage, which significantly compromises their postharvest quality. While α-lipoic acid (α-LA) shows promise in extending the shelf life of fruits and vegetables, its role in mitigating CI in peaches remains unexplored. In this study, postharvest peaches were treated with 0.

View Article and Find Full Text PDF

Novel plant growth-promoting endophytic bacteria, Stenotrophomonas maltophilia SaRB5, facilitate phytoremediation by plant growth and cadmium absorption in Salix suchowensis.

Ecotoxicol Environ Saf

September 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China. Ele

Seven plant growth-promoting bacteria (PGPB) were isolated from extracts of surface-sterilized Sedum alfredii Hance. Among the seven isolates, the strain SaRB5 identified as Stenotrophomonas maltophilia through 16S rDNA sequence analysis, exhibited highest levels of heavy metal resistance and plant growth-promoting traits. SaRB5 tolerated high concentrations of cadmium (Cd) (1.

View Article and Find Full Text PDF

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Background: Melasma is a prevalent skin condition that primarily affects females of reproductive age. Despite the various available treatments, managing melasma is challenging due to frequent relapses and partial responses. Tranexamic acid (TXA) has gained attention as a potential treatment because of its antifibrinolytic and anti-melanogenic properties.

View Article and Find Full Text PDF