A Fringe Phase Extraction Method Based on Neural Network.

Sensors (Basel)

Shenzhen Key Laboratory of Intelligent Optical Measurement and Detection, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, China.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In optical metrology, the output is usually in the form of a fringe pattern, from which a phase map can be generated and phase information can be converted into the desired parameters. This paper proposes an end-to-end method of fringe phase extraction based on the neural network. This method uses the U-net neural network to directly learn the correspondence between the gray level of a fringe pattern and the wrapped phase map, which is simpler than the exist deep learning methods. The results of simulation and experimental fringe patterns verify the accuracy and the robustness of this method. While it yields the same accuracy, the proposed method features easier operation and a simpler principle than the traditional phase-shifting method and has a faster speed than wavelet transform method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7957713PMC
http://dx.doi.org/10.3390/s21051664DOI Listing

Publication Analysis

Top Keywords

neural network
12
fringe phase
8
phase extraction
8
based neural
8
fringe pattern
8
phase map
8
method
7
fringe
5
extraction method
4
method based
4

Similar Publications

The widespread dissemination of fake news presents a critical challenge to the integrity of digital information and erodes public trust. This urgent problem necessitates the development of sophisticated and reliable automated detection mechanisms. This study addresses this gap by proposing a robust fake news detection framework centred on a transformer-based architecture.

View Article and Find Full Text PDF

The increasing dependence on cloud computing as a cornerstone of modern technological infrastructures has introduced significant challenges in resource management. Traditional load-balancing techniques often prove inadequate in addressing cloud environments' dynamic and complex nature, resulting in suboptimal resource utilization and heightened operational costs. This paper presents a novel smart load-balancing strategy incorporating advanced techniques to mitigate these limitations.

View Article and Find Full Text PDF

Knowledge tracing can reveal students' level of knowledge in relation to their learning performance. Recently, plenty of machine learning algorithms have been proposed to exploit to implement knowledge tracing and have achieved promising outcomes. However, most of the previous approaches were unable to cope with long sequence time-series prediction, which is more valuable than short sequence prediction that is extensively utilized in current knowledge-tracing studies.

View Article and Find Full Text PDF

Accurate prediction of time-varying dynamic parameters during the milling process is a prerequisite for chatter-free cutting of thin-walled parts. In this paper, a matrix iterative prediction method based on weighted parameters is proposed for the time-varying structural modes during the milling of thin-walled blade structures. The thin-walled blade finite element model is established based on the 4-node plate element, and the time-varying dynamic parameters of the workpiece during the cutting process can be obtained by modifying the thickness of the nodes through the constructed mesh element finite element model It is not necessary to re-divide the mesh elements of the thin-walled parts at each cutting position, thus improving the calculation efficiency of the dynamic parameters of the workpiece.

View Article and Find Full Text PDF

At present, significant progress has been made in the research of image encryption, but there are still some issues that need to be explored in key space, password generation and security verification, encryption schemes, and other aspects. Aiming at this, a digital image encryption algorithm was developed in this paper. This algorithm integrates six-dimensional cellular neural network with generalized chaos to generate pseudo-random numbers to generate the plaintext-related ciphers.

View Article and Find Full Text PDF