98%
921
2 minutes
20
To develop solid-state light-emitting materials with high luminescence efficiency, determining the potential photophysics and luminescence mechanisms of the aggregation state remains a challenge and a priority. Here, we apply density functional theory to study the photophysical properties of a series of square planar Pt(ii) complexes in both monomeric and dimeric forms. We reveal that four monomeric Pt(ii) complexes are dominated by triplet ligand-to-ligand charge-transfer, and the lack of the triplet metal-to-ligand charge-transfer feature results in weak spin-orbit coupling (SOC), which leads to limited radiative rates; moreover, calculated nonradiative transition rates are one or two orders of magnitude higher than those radiative rates because a large amount of reorganization energy caused by the vibration of the bipyrazolate (bipz) ligand cannot be readily suppressed in the monomeric form. Therefore, four monomers exhibit photoluminescence quenching in CH2Cl2 solution in both theoretical calculations and experiments. However, in the solid state, the intense luminescence phenomenon indicates obviously distinct properties between the monomer and aggregation. We carried out a dimer model to interpret that the interaction of PtPt induces a metal-metal-to-ligand charge-transfer excimeric state, which leads more metal components to participate in the charge transfer and enhance the SOC effect. At the same time, the ligand vibration can be significantly reduced by the shortened distance, and there is a strong π-π packing interaction in the dimer; thus, an excellent quantum yield can be achieved in aggregation. In addition, we disclose that introducing bulky substituents bearing electron-donating groups at R' and R'' positions have little effect on the properties of the monomers; however, there is a benefit of restricting the internal reorganization energy through the intermolecular interaction when packing in the solid state. Therefore, substitutions can be tuned to improve the properties of monomers (such as emission energy and reorganization energy). We hope that our work will shine some light on Pt(ii) emitters in the fabrication of efficient OLEDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp06269c | DOI Listing |
ACS Electrochem
September 2025
Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Reaction rate coefficients for electron-transfer processes at the electrode-electrolyte interface are commonly estimated by using the Butler-Volmer equation, but their values are inaccurate beyond a few tenths of volts of overpotential. The Marcus-Hush-Chidsey (MHC) formalism yields correct asymptotic behavior of the rate coefficients vs applied overpotential but has complex dependencies on the redox system's intrinsic parameters, which can be difficult to model or measure. In this work, we bridge the two kinetics formalisms to estimate the reorganization energy, one of the important parameters for the MHC formalism, and investigate its dependence on other intrinsic parameters such as activation barriers, electronic coupling strength, and the density of states of the electrode surface.
View Article and Find Full Text PDFBiophys J
September 2025
Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA. Electronic address:
Macromolecular structure is central to biology. Yet, not all biomolecules have a well-defined fold. Intrinsically disordered regions are ubiquitous, conveying a versatility to function even in otherwise folded structures.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China.
Economically viable and biologically compatible amino acids demonstrate significant potential as electrolyte microstructure modifiers in aqueous zinc-ion batteries (AZIBs). Compared to polar amino acids, nonpolar amino acids simultaneously own zincophilicity and hydrophobicity, showing great potential in the industrial application of AZIBs. However, nonpolar amino acids have been comparatively understudied in existing research investigations.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
College of Agriculture and Biological Science, Dali University, Dali 671000, China.
The E76K mutation in protein tyrosine phosphatase (PTP) SHP2 is a recurrent driver of developmental disorders and cancers, yet the mechanism by which this single-site substitution promotes persistent activation remains elusive. Here, we combine path-based conformational sampling, unbiased molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) to elucidate how E76K reshapes the activation landscape and regulatory architecture of SHP2. Using a minimum-action trajectory derived from experimentally determined closed and open structures, we generated representative transition intermediates to guide the unbiased MD simulations.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Confucius Energy Storage Lab, School of Energy and Environment & Z Energy Storage Center, Southeast University, Nanjing 211189, China.
Developing efficient and durable catalysts for the oxygen evolution reaction (OER) in acidic media is essential for advancing proton exchange membrane water electrolysis (PEMWE). However, catalyst instability caused by lattice oxygen (O) depletion and metal dissolution remains a critical barrier. Here, we propose an oxophilic-site-mediated dynamic oxygen replenishment mechanism (DORM), in which O actively participates in O-O bond formation and is continuously refilled by water-derived species.
View Article and Find Full Text PDF