98%
921
2 minutes
20
Herein, a functional class of microenvironment-associated nanomaterials is reported for improving the second near-infrared (NIR-II) imaging and photothermal therapeutic effect on intracranial tumors via a spontaneous membrane-adsorption approach. Specific peptides, photothermal agents, and biological alkylating agents were designed to endow the nanogels with high targeting specificity, photothermal properties, and pharmacological effects. Importantly, the frozen scanning electron microscopy technology (cryo-SEM) was utilized to observe the self-association of nanomaterials on tumor cells. Interestingly, the spontaneous membrane-adsorption behavior of nanomaterials was captured through direct imaging evidence. Histological analysis showed that the cross-linking adhesion in intracranial tumor and monodispersity in normal tissues of the nanogels not only enhanced the retention time but also ensured excellent biocompatibility. Impressively, data confirmed that the microenvironment-associated nanogels could significantly enhance brain tumor clearance rate within a short treatment timeframe (only two weeks). In short, utilizing the spontaneous membrane-adsorption strategy can significantly improve NIR-II diagnosis and phototherapy in brain diseases while avoiding high-risk complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c08532 | DOI Listing |
J Phys Chem B
September 2024
CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic.
Despite ongoing research on antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs), their precise translocation mechanism remains elusive. This includes Buforin 2 (BF2), a well-known AMP, for which spontaneous translocation across the membrane has been proposed but a high barrier has been calculated. Here, we used computer simulations to investigate the effect of a nonequilibrium situation where the peptides are adsorbed on one side of the lipid bilayer, mimicking experimental conditions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2022
Institute of Chemical Materials, Chinese Academy of Engineering and Physics, 621900 Mianyang, China.
Membrane permeation and the partitioning of polycyclic aromatic hydrocarbons (PAHs) are crucial aspects affecting their carcinogenicity and mutagenicity. However, a clear understanding of these processes is still rare due to the difficulty of determining the details experimentally. Here, the interactions between PAHs and lipid bilayers were studied by molecular simulations, mainly to check the influence of molecular weight and orientation.
View Article and Find Full Text PDFACS Nano
March 2021
School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, 100084 Beijing, P.R. China.
Herein, a functional class of microenvironment-associated nanomaterials is reported for improving the second near-infrared (NIR-II) imaging and photothermal therapeutic effect on intracranial tumors via a spontaneous membrane-adsorption approach. Specific peptides, photothermal agents, and biological alkylating agents were designed to endow the nanogels with high targeting specificity, photothermal properties, and pharmacological effects. Importantly, the frozen scanning electron microscopy technology (cryo-SEM) was utilized to observe the self-association of nanomaterials on tumor cells.
View Article and Find Full Text PDFACS Nano
February 2013
Institute of Materials, École Polytechnique Fédérale de Lausanne, EPFL-STI-IMX-SuNMIL, Lausanne CH-1015, Switzerland.
Understanding as well as rapidly screening the interaction of nanoparticles with cell membranes is of central importance for biological applications such as drug and gene delivery. Recently, we have shown that "striped" mixed-monolayer-coated gold nanoparticles spontaneously penetrate a variety of cell membranes through a passive pathway. Here, we report an electrical approach to screen and readily quantify the interaction between nanoparticles and bilayer lipid membranes.
View Article and Find Full Text PDFMol Membr Biol
April 2008
Department of Biochemistry, University of Oxford, Oxford, UK.
Spontaneous membrane adsorption, folding and insertion of the synthetic WALP16 and KALP16 peptides was studied by computer simulations starting from completely extended conformations. The peptides were simulated using an unmodified all-atom force field in combination with an efficient Monte Carlo sampling algorithm. The membrane is represented implicitly as a hydrophobic zone inside a continuum solvent modelled using the generalized Born theory of solvation.
View Article and Find Full Text PDF