98%
921
2 minutes
20
Background: Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are commonly used new-generation drugs for depression. Depressive symptoms are thought to be closely related to neuroinflammation. In this study, we used up-to-date protocols of culture and stimulation and aimed to understand how astrocytes respond to the antidepressants.
Methods: Primary astrocytes were isolated and cultured using neurobasal-based serum-free medium. The cells were treated with a cytokine mixture comprising complement component 1q, tumor necrosis factor α, and interleukin 1α with or without pretreatments of antidepressants. Cell viability, phenotypes, inflammatory responses, and the underlying mechanisms were analyzed.
Results: All the SSRIs, including paroxetine, fluoxetine, sertraline, citalopram, and fluvoxamine, show a visible cytotoxicity within the range of applied doses, and a paradoxical effect on astrocytic inflammatory responses as manifested by the promotion of inducible nitric oxide synthase (iNOS) and/or nitric oxide (NO) and the inhibition of interleukin 6 (IL-6) and/or interleukin 1β (IL-1β). The SNRI venlafaxine was the least toxic to astrocytes and inhibited the production of IL-6 and IL-1β but with no impact on iNOS and NO. All the drugs had no regulation on the polarization of astrocytic A1 and A2 types. Mechanisms associated with the antidepressants in astrocytic inflammation route via inhibition of JNK1 activation and STAT3 basal activity.
Conclusions: The study demonstrated that the antidepressants possess differential cytotoxicity to astrocytes and function differently, also paradoxically for the SSRIs, to astrocytic inflammation. Our results provide novel pieces into understanding the differential efficacy and tolerability of the antidepressants in treating patients in the context of astrocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7890881 | PMC |
http://dx.doi.org/10.1186/s12974-021-02097-z | DOI Listing |
Metab Brain Dis
September 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
Acute or chronic liver damage can result in Hepatic Encephalopathy (HE), a potentially fatal neuropsychiatric condition that leads to cerebral and neurological alterations. Dapagliflozin (DAPA), an orally active Sodium/Glucose cotransporter 2 inhibitor with long duration of action. The study aim was to evaluate the potential protective impact of DAPA against HE caused by Thioacetamide (TAA) in rats.
View Article and Find Full Text PDFNeural Plast
September 2025
Department of Anesthesiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Astrocytes play a crucial role in ensuring neuronal survival and function. In stroke, astrocytes trigger the unfolded protein response (UPR) to restore endoplasmic reticulum homeostasis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), a newly identified endoplasmic reticulum stress-induced neurotrophic factor, attenuates cerebral ischemic injury by reducing inflammatory responses.
View Article and Find Full Text PDFFront Public Health
September 2025
Neurosciences Axis, Centre de Recherche du Centre Hospitalier Universitaire (CRCHU) de Québec-Université Laval, Québec City, QC, Canada.
Introduction: Preventive measures have been implemented in hospitals during COVID-19, but how these guidelines affected mental health among healthcare workers (HCWs) remains to be determined. On another note, reliable psychological and blood-based markers are needed to promptly identify HCWs at-risk to develop distress. Extracellular vesicles (EVs) originating from brain cross the blood-brain barrier and are detectable in blood, giving them a highly valuable potential for biomarker discovery.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Spain; Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, 41013, Spain. Electronic address:
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment, synaptic dysfunction, and neuronal loss. Neuroinflammation, driven by the activation of microglia and astrocytes, is a key contributor to AD pathology, amplifying oxidative stress and amyloid-β toxicity. Modulation of neuroinflammatory pathways thus represents a promising therapeutic strategy.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.
Alzheimer's disease (AD), a leading cause of dementia, represents a critical unmet global medical need. While the precise mechanisms underlying AD pathogenesis remain elusive, increasing evidence underscores the pivotal role of neuroinflammation in driving cognitive impairment. N6-methyladenosine (m6A), an epigenetic modification regulating RNA metabolism, has been found to be dysregulated in AD.
View Article and Find Full Text PDF