Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aims: Continuous glucose monitoring improves glycemic control in diabetes. This study compared the accuracy of the Dexcom G5 Mobile (Dexcom, San Diego, CA) transcutaneous sensor (DG5) and the first version of Eversense (Senseonics,Inc., Germantown, MD) implantable sensor (EVS).

Methods And Results: Subjects with type 1 diabetes (T1D) and using EVS wore simultaneously DG5 for seven days. At day 3, patients were admitted to a clinical research center (CRC) to receive breakfast with delayed and increased insulin bolus to induce glucose excursions. At CRC, venous glucose was monitored every 15 min (or 5 min during hypoglycemia) for 6 h by YSI 2300 STAT PLUS™ glucose and lactate analyzer. At home patients were requested to perform 4 fingerstick glucose measurements per day. Eleven patients (9 males, age 47.4 ± 11.3 years, M±SD) were enrolled. During home-stay the median [25th-75th percentile] absolute relative difference (ARD) over all CGM-fingerstick matched-pairs was 11.64% [5.38-20.65]% for the DG5 and 10.75% [5.15-19.74]% for the EVS (p-value = 0.58). At CRC, considering all the CGM-YSI matched-pairs, the DG5 showed overall smaller median ARD than EVS, 7.91% [4.14-14.30]% vs 11.4% [5.04-18.54]% (p-value<0.001). Considering accuracy during blood glucose swings, DG5 performed better than EVS when glucose rate-of-change was -0.5 to -1.5 mg/dL/min, with median ARD of 7.34% [3.71-12.76]% vs 13.59% [4.53-20.78]% (p-value<0.001), and for rate-of-change < -1.5 mg/dl/min, with median ARD of 5.23% [2.09-15.29]% vs 12.73% [4.14-20.82]% (p-value = 0.02).

Conclusions: DG5 was more accurate than EVS at CRC, especially when glucose decreased. No differences were found at home.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.numecd.2020.09.006DOI Listing

Publication Analysis

Top Keywords

transcutaneous sensor
8
glucose
6
comparing accuracy
4
accuracy transcutaneous
4
sensor
4
sensor 90-day
4
90-day implantable
4
implantable glucose
4
glucose sensor
4
sensor background
4

Similar Publications

Background: Gait deficits and leg spasticity are frequent symptoms in Primary and Secondary Progressive Multiple Sclerosis (PPMS and SPMS). Transcutaneous spinal cord stimulation (tSCS) may alleviate these symptoms through the reduction of spinal hyperexcitability. We conducted a single-center, randomized, sham-controlled clinical crossover study (German Clinical Trials Register: DRKS00023357, https://www.

View Article and Find Full Text PDF

A wearable closed-loop transcutaneous electrical nerve stimulation (TENS) platform has been developed to address the limitations of conventional open-loop neuromodulation systems. Unlike existing systems such as CLoSES-which targets intracranial stimulation-and electromyography-triggered functional electrical stimulation (EMG-FES) platforms primarily used for motor rehabilitation, the proposed device uniquely integrates low-latency surface electromyography (sEMG)-driven control with six-channel current stimulation in a fully wearable, non-invasive format aimed at ambulatory pain modulation. The system combines real-time sEMG acquisition, adaptive signal processing, a programmable multi-channel stimulation engine, and a high-voltage, boost-regulated power supply within a compact, battery-powered architecture.

View Article and Find Full Text PDF

Reference electrode (RE) drift is a common problem when electrodes are used for pH determination, especially over extended periods of time or in complex media. For voltammetric pH measurements, one method to mitigate against RE drift is to add a second pH insensitive redox species (the internal reference, IREF) and measure the difference in peak potential, , between the signal associated with the pH sensitive species, , and IREF, . This work strategically explores how to choose the correct IREF species.

View Article and Find Full Text PDF

This article presents a novel technique that is immune to offset, enabling precise determination of the lifetime of luminescent materials. The technique is specifically applied to measure transcutaneous oxygen, an indicator of oxygen that diffuses through the skin and reflects arterial oxygen levels. Unlike intensity-based measurements, lifetime-based luminescence measurements are superior because they decouple oxygen information from confounding factors.

View Article and Find Full Text PDF

This study investigates the effects of transcutaneous electroacupuncture stimulation (TEAS) on eyeblink rate, EEG, and heart rate variability (HRV), emphasising whether eyeblink data-often dismissed as artefacts-can serve as useful physiological markers. Sixty-six participants underwent four TEAS sessions with different stimulation frequencies (2.5, 10, 80, and 160 pps, with 160 pps as a low-amplitude sham).

View Article and Find Full Text PDF