Investigating the representation of uncertainty in neuronal circuits.

PLoS Comput Biol

University of Geneva, Département des neurosciences fondamentales, Geneva, Switzerland.

Published: February 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Skilled behavior often displays signatures of Bayesian inference. In order for the brain to implement the required computations, neuronal activity must carry accurate information about the uncertainty of sensory inputs. Two major approaches have been proposed to study neuronal representations of uncertainty. The first one, the Bayesian decoding approach, aims primarily at decoding the posterior probability distribution of the stimulus from population activity using Bayes' rule, and indirectly yields uncertainty estimates as a by-product. The second one, which we call the correlational approach, searches for specific features of neuronal activity (such as tuning-curve width and maximum firing-rate) which correlate with uncertainty. To compare these two approaches, we derived a new normative model of sound source localization by Interaural Time Difference (ITD), that reproduces a wealth of behavioral and neural observations. We found that several features of neuronal activity correlated with uncertainty on average, but none provided an accurate estimate of uncertainty on a trial-by-trial basis, indicating that the correlational approach may not reliably identify which aspects of neuronal responses represent uncertainty. In contrast, the Bayesian decoding approach reveals that the activity pattern of the entire population was required to reconstruct the trial-to-trial posterior distribution with Bayes' rule. These results suggest that uncertainty is unlikely to be represented in a single feature of neuronal activity, and highlight the importance of using a Bayesian decoding approach when exploring the neural basis of uncertainty.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7880493PMC
http://dx.doi.org/10.1371/journal.pcbi.1008138DOI Listing

Publication Analysis

Top Keywords

neuronal activity
16
bayesian decoding
12
decoding approach
12
uncertainty
10
bayes' rule
8
correlational approach
8
features neuronal
8
neuronal
7
activity
6
approach
5

Similar Publications

During a critical period of postnatal brain development, neural circuits undergo significant refinement coincident with widespread alternative splicing of hundreds of genes, which undergo altered splice site selection for the generation of isoforms essential for synaptic plasticity. Here, we reveal that neuronal activity-dependent phosphorylation of paxillin at its serine 119 (p-paxillin) acts as a molecular switch in the nucleus for the control of alternative splicing during this period. We show that following NMDA receptor activation, nuclear p-paxillin is recruited to nuclear speckles, where it interacts with splicing factors, such as U2AFs.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.

View Article and Find Full Text PDF

Cell death in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS) characterized by inflammatory demyelination and progressive neurodegeneration. Although current disease-modifying therapies modulate peripheral autoimmune responses, they are insufficient to fully prevent tissue specific neuroinflammation and long-term neuronal and oligodendrocyte loss. Growing evidence implicates various regulated cell death (RCD) pathways, including apoptosis, necroptosis, pyroptosis, and ferroptosis, not only as downstream consequences of chronic inflammation, but also as active drivers of demyelination, axonal injury, and glial dysfunction in MS.

View Article and Find Full Text PDF

Aging correlates with alterations in metabolism and neuronal function, which affect the overall regulation of energy homeostasis. Recent studies have highlighted that protein O-GlcNAcylation, a common post-translational modification regulating metabolic function, is linked to aging. In particular, elevated O-GlcNAcylation increases energy expenditure, potentially due to alterations in the neuronal function of the hypothalamic arcuate nucleus (ARC), a key brain region for energy balance and metabolic processes.

View Article and Find Full Text PDF