Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Obligate biotrophic pathogens like the pea powdery mildew© (PM) Erysiphe pisi establish long-term feeding relationships with their host, during which they siphon sugars from host cells through haustoria. Plants in turn deploy sugar transporters to restrict carbon allocation toward pathogens, as a defense mechanism. Studies in Arabidopsis have shown that sugar transport protein 13 (STP13), a proton-hexose symporter involved in apoplasmic hexose retrieval, contributes to bacterial and necrotrophic fungal resistance by limiting sugar flux toward these pathogens. By contrast, expression of Lr67res,a transport-deficient wheat STP13 variant harboring two amino acid substitutions (G144R and V387L), conferred resistance against biotrophic fungi in wheat and barley, indicating its broad applicability in disease management. Here, we investigated the role of STP13 and STP13G144R in legume-PM interactions. We show that Medicago truncatula STP13.1 is a proton-hexose symporter involved in basal resistance against PM and indirectly show that Lr67res-mediated PM resistance, so far reported only in monocots, is transferable to legumes. Among the 30 MtSTPs, STP13.1 exhibited the highest fold induction in PM-challenged leaves and was also responsive to chitosan, ABA and sugar treatment. Functional assays in yeast showed that introduction of the G144R mutation but not V388L abolished MtSTP13.1's hexose uptake ability. Virus-induced gene silencing of MtSTP13 repressed pathogenesis-related (PR) gene expression and enhanced PM susceptibility in M. truncatula whereas transient overexpression of MtSTP13.1 or MtSTP13.1G144R in pea induced PR and isoflavonoid pathway genes and enhanced PM resistance. We propose a model in which STP13.1-mediated sugar signaling triggers defense responses against PM in legumes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcab021DOI Listing

Publication Analysis

Top Keywords

medicago truncatula
8
sugar transport
8
transport protein
8
proton-hexose symporter
8
symporter involved
8
sugar
6
resistance
6
truncatula sugar
4
protein lr67res-like
4
lr67res-like variant
4

Similar Publications

The origin and phylogenetic distribution of symbiotic associations between nodulating angiosperms and nitrogen-fixing bacteria have long intrigued biologists. Recent comparative evolutionary analyses have yielded alternative hypotheses: a multistep pathway of independent gains and losses of root nodule symbiosis vs. a single gain followed by numerous losses.

View Article and Find Full Text PDF

In legume root nodules, rhizobia invade host cells to form symbiosomes that drive atmospheric nitrogen fixation. Although the metabolic roles of infected cells (ICs) are well established, the contributions of adjacent uninfected cells (UCs) have remained largely unexplored. Here, through forward genetics methods, we identify DEBINO4, a phosphoenolpyruvate carboxylase (PEPC) uniquely expressed in UCs, as a pivotal regulator of carbon metabolism essential for sustaining symbiosome function and nitrogen assimilation.

View Article and Find Full Text PDF

In symbiotic plant-microbe interactions, the host invests considerable amounts of resources in the microbial partner. If the microbe does not reciprocate with a comparable symbiotic benefit, it is regarded as a cheater. The host responds to cheaters with negative feedback mechanisms (sanctions) to prevent fitness deficits resulting from being exploited.

View Article and Find Full Text PDF

The CLAVATA signaling pathway regulates plant development and plant-environment interactions. CLAVATA signaling consists of mobile, cell-type or environment-specific CLAVATA3/ESR-related (CLE) peptides, which are perceived by a receptor complex consisting of leucine-rich repeat receptor-like kinases such as CLAVATA1 and receptor-like proteins such as CLAVATA2, which often functions with the pseudokinase CORYNE (CRN). CLAVATA signaling has been extensively studied in various plant species for its developmental role in meristem maintenance.

View Article and Find Full Text PDF

GATA transcription factors are crucial for plant development and environmental responses, yet their roles in plant evolution and root nodule symbiosis are still not well understood. This study identified GATA genes across the genomes of 77 representative plant species, revealing that this gene family originated in Charophyta and significantly expanded in both gymnosperms and angiosperms. Phylogenetic analyses, along with examinations of conserved motifs and cis-regulatory elements in and , clearly demonstrated structural and functional divergence within the GATA family.

View Article and Find Full Text PDF