Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Coral-associated microbial communities are sensitive to multiple environmental and biotic stressors that can lead to dysbiosis and mortality. Although the processes contributing to these microbial shifts remain inadequately understood, a number of potential mechanisms have been identified. For example, predation by various corallivore species, including ecologically-important taxa such as parrotfishes, may disrupt coral microbiomes via bite-induced transmission and/or enrichment of potentially opportunistic bacteria. Here, we used a combination of mesocosm experiments and field-based observations to investigate whether parrotfish corallivory can alter coral microbial assemblages directly and to identify the potentially relevant pathways (e.g. direct transmission) that may contribute to these changes.

Results: Our mesocosm experiment demonstrated that predation by the parrotfish Chlorurus spilurus on Porites lobata corals resulted in a 2-4x increase in bacterial alpha diversity of the coral microbiome and a shift in bacterial community composition after 48 h. These changes corresponded with greater abundance of both potentially beneficial (i.e. Oceanospirillum) and opportunistic bacteria (i.e. Flammeovirgaceae, Rhodobacteraceae) in predated compared to mechanically wounded corals. Importantly, many of these taxa were detectable in C. spilurus mouths, but not in corals prior to predation. When we sampled bitten and unbitten corals in the field, corals bitten by parrotfishes exhibited 3x greater microbial richness and a shift in community composition towards greater abundance of both potential beneficial symbionts (i.e. Ruegeria) and bacterial opportunists (i.e. Rhodospiralles, Glaciecola). Moreover, we observed 4x greater community variability in naturally bitten vs. unbitten corals, a potential indicator of dysbiosis. Interestingly, some of the microbial taxa detected in naturally bitten corals, but not unbitten colonies, were also detected in parrotfish mouths.

Conclusions: Our findings suggest that parrotfish corallivory may represent an unrecognized route of bacterial transmission and/or enrichment of rare and distinct bacterial taxa, both of which could impact coral microbiomes and health. More broadly, we highlight how underappreciated pathways, such as corallivory, may contribute to dysbiosis within reef corals, which will be critical for understanding and predicting coral disease dynamics as reefs further degrade.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807759PMC
http://dx.doi.org/10.1186/s42523-020-0024-0DOI Listing

Publication Analysis

Top Keywords

corals
9
microbial communities
8
coral microbiomes
8
transmission and/or
8
and/or enrichment
8
opportunistic bacteria
8
parrotfish corallivory
8
community composition
8
greater abundance
8
bitten unbitten
8

Similar Publications

Objective: Researchers have differentiated forms (overt, relational) and functions (proactive, reactive) of aggressive behavior; however, the assessment options for measuring these constructs in youth remain limited. This study examined the parent-report Peer Conflict Scale (PCS) for measuring forms and functions of youth aggressive behavior in English and Spanish, including short- and long-form versions.

Method: Participants were caregivers of 653 youths (ages 6-17; 57% male; 48% Hispanic) throughout North America.

View Article and Find Full Text PDF

The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.

View Article and Find Full Text PDF

Wayward youth: how maturity, reproduction and seaweed drive snapper (Lutjanus spp.) habitat shifts.

J Fish Biol

September 2025

National Oceanic and Atmospheric Administration/NOS/NCCOS/MSE/Biogeography Branch, Silver Spring, Maryland, USA.

Despite snappers' (family Lutjanidae) commercial and ecological significance, knowledge gaps remain regarding life history, ontogeny and ecology across their range in the Caribbean and south Atlantic. There is also a need to explore the efficacy of marine protected areas (MPAs) as a tool for enhancing nursery and spawning habitat conservation for multiple snapper species. Additionally, even as hurricanes and sargassum inundation have become rising issues for coastal communities, there is a scarcity of data on how commercially important species respond to these environmental disturbances.

View Article and Find Full Text PDF

Graph neural network integrated with pretrained protein language model for predicting human-virus protein-protein interactions.

Brief Bioinform

August 2025

State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China.

The systematic identification of human-virus protein-protein interactions (PPIs) is a critical step toward elucidating the underlying mechanisms of viral infection, directly informing the development of targeted interventions against existing and emerging viral threats. In this work, we presented DeepGNHV, an end-to-end framework that integrated a pretrained protein language model with structural features derived from AlphaFold2 and leveraged graph attention networks to predict human-virus PPIs. In comparison to other state-of-the-art approaches, DeepGNHV exhibited superior predictive performance, especially when applied to viral proteins absent from the training process, indicating its strong generalization capability for detecting newly emerging virus-related PPIs.

View Article and Find Full Text PDF

Neurogenic bladder and lower urinary tract (LUT) dysfunctions encompass a wide variety of urinary disorders resulting from nervous system impairments. Unfortunately, conventional treatments are still limited and can have significant complication rates, especially when stent implantations or other surgical procedures are involved. Therefore, there is a critical need to develop novel therapeutic strategies and pharmacological approaches to address these challenging urological conditions.

View Article and Find Full Text PDF