Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The authors describe a novel, facile, and sensitive fluorometric strategy based on a Cu-thiamine (Cu-TH) system for the detection of alkaline phosphatase (ALP) activity and inhibition. The principle of the method is as follows. Under a basic conditions, TH, which does not exhibit a fluorescence signal, is oxidized into fluorescent thiochrome (TC) by Cu. Ascorbic acid 2-phosphate (AAP), which is the enzyme substrate, is hydrolyzed to produce ascorbic acid (AA) by ALP. The newly formed AA then reduces Cu to Cu, which prevents the oxidation of TH by Cu; as a result, the fluorescent signal becomes weaker. On the contrary, in the absence of ALP, AAP cannot reduce Cu; additions of Cu and TH result in a dramatic increase of the fluorescent signal. The sensing strategy displays brilliant sensitivity with a detection limit of 0.08 U/L, and the detection is linear in the concentration range of 0.1 to 100 U/L. This approach was successfully applied to ALP activity in human serum samples, indicating that it is reliable and may be applied to the clinical diagnosis of ALP-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863742PMC
http://dx.doi.org/10.3390/s21030674DOI Listing

Publication Analysis

Top Keywords

detection alkaline
8
alkaline phosphatase
8
based cu-thiamine
8
alp activity
8
ascorbic acid
8
fluorescent signal
8
sensitive fluorescence
4
fluorescence assay
4
detection
4
assay detection
4

Similar Publications

Nitrogen (N) fixation with non-thermal plasmas has been proposed as a sustainable alternative to meet growing N fertilizer demands for agriculture. This technology generates Plasma Activated Water (PAW) with a range of chemical compositions, including different concentrations of nitrate (NO₃⁻) and hydrogen peroxide (H2O2), among other compounds. Potential use of PAW as an effective crop fertilizer necessitates a robust understanding of the underlying biology of the plant, which is not yet available.

View Article and Find Full Text PDF

A sequence-activated near-infrared fluorescence probe for precisely tracking senescence.

Chem Sci

August 2025

Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China

Real-time monitoring of senescent cells is of great significance for understanding and intervening in aging. Since overexpression of endogenous β-galactosidase (β-gal) is not unique to senescent cells, probes relying solely on β-gal activity could yield inaccurate senescent cell detection. Herein, we designed a dual-mode sequential response AND logic NIR probe MFB-βgal, which contains a β-gal-cleavable unit and a morpholine unit, serving as an enzymatic activity trigger and a lysosomal targeting moiety, respectively.

View Article and Find Full Text PDF

Using leaf fibers from pineapple (PALFs) as a model dual-purpose plant, we deliberately explore the effect of bio- and semibiobased treatment using xylanase, cellulase, and a mixture of pectinase and amylase. We assess these treatments for their potential to selectively and precisely remove lignocellulosic components. Additionally, we examine how they modify the relative content of cellulose, hemicellulose, and lignin, as these are key factors affecting the physical appearance, dimensional structures, and mechanical integrity.

View Article and Find Full Text PDF

PFAS in plant-biosolids-soil systems: Distribution, fractionation, and effects on soil microbial communities.

J Hazard Mater

September 2025

Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY 12222, United States. Electronic address:

This study examined the behavior of six U.S. Environmental Protection Agency (EPA) regulated per- and polyfluoroalkyl substances (PFAS) compounds in vegetated soils amended with Class A and Class B biosolids.

View Article and Find Full Text PDF

Self-phosphorylating DNAzyme DK1 enables programmable multi-analyte readout via PfAgo.

Biosens Bioelectron

September 2025

Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School

DNAzymes possessing kinase-like activities have long held theoretical promise, yet their practical implementation has remained significantly limited. Notably, DNAzyme kinase 1 (DK1), discovered over two decades ago, exhibits a unique self-phosphorylation capability upon encountering specific substrates like ATP, but its broad-based and programmable applications have not yet been fully realized. In this study, we innovatively couple DK1's autophosphorylation mechanism with the PfAgo to establish a novel programmable cascade sensing platform named RASTEN (Robust pfAgo-based Strategy for POC Testing Non-nucleic Acid and Nucleic Acid).

View Article and Find Full Text PDF