98%
921
2 minutes
20
In this work, we successfully synthesized novel polymer gel beads based on functionalized iron oxide (Fe3O4), activated charcoal (AC) particles with β-cyclodextrin (CD) and sodium alginate (SA) polymer (Fe3O4/CD/AC/SA), by a simple, reproducible and inexpensive method. These beads proved to be versatile and strong adsorbents with magnetic properties and high adsorption capacity. The composites were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, vibrating sample magnetometry, adsorption at -196 °C, high resolution transmission electron microscopy, thermogravimetric analysis and point of zero charge measurements. Two dyes, two drugs and one metal were used to test the adsorption capability of the prepared polymer nanocomposite. The adsorbent showed good removal efficiencies for the studied pollutants, especially the cationic dyes and the metal, when compared to other low-cost adsorbents. The saturated adsorption capacity of Fe3O4/CD/AC/SA reached 5.882 mg g-1 for methyl violet (MV), 2.283 mg g-1 for brilliant green (BG), 2.551 mg g-1 for norfloxacin (NOX), 3.125 mg g-1 for ciprofloxacin (CPX), 10.10 mg g-1 for copper metal ion (Cu(II)). The adsorption isotherm studies showed that data fitted well with Langmuir and Temkin isotherms models. The kinetic data showed good correlation coefficient with low error function for the pseudo-second order kinetic model. The data analysis was carried out using error and regression coefficient functions for the estimation of best-fitting isotherm and kinetic models, namely: chi-square test (χ2) and sum of the squares of errors (SSE). The activation energy was found to be 47.68 kJ mol-1 for BG, 29.09 kJ mol-1 for MV, 28.93 kJ mol-1 for NOX, 4.53 kJ mol-1 for CPX and 17.08 kJ mol-1 for Cu(II), which represent chemisorption and physisorption behavior of sorbent molecules. The polymer composites can be regenerated and easily separated from aqueous solution without any weight loss. After regeneration, the Fe3O4/CD/AC/SA beads still have good adsorption capacities up to four cycles of desorption and adsorption. The results indicate that the polymer gel beads are promising adsorbents for the removal of different categories of toxicants (like dyes, drugs and metal) in single adsorbate aqueous systems. Thus, the novel Fe3O4/CD/AC/SA beads can be effectively employed for a large-scale applications as environmentally compatible materials for the adsorption of different categories of pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.124840 | DOI Listing |
Food Res Int
November 2025
Department of Animal Science, Iowa State University, Ames, IA 50011, United States. Electronic address:
Lutein and omega-3 fatty acids, particularly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), offer significant health benefits, especially when consumed together. However, their incorporation in food is often low due to their instability during processing and storage. Meat products play an essential role in human nutrition and are generally deficient in lutein and omega-3 fatty acids.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Food Science and Technology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA 30223, USA. Electronic address:
Turmeric-derived curcumin offers various health benefits but has poor bioavailability due to low water solubility and rapid gastrointestinal degradation. A recently proposed raw-to-nano strategy enables the direct formulation of turmeric nanoparticles from raw turmeric, using inherent biopolymers to encapsulate and protect curcumin. However, it remains unclear how these nanoparticles enhance gastrointestinal bioavailability and how food matrices influence this process.
View Article and Find Full Text PDFFood Res Int
November 2025
Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China. Electronic address:
This study employed high-pressure microfluidization (HPM) to facilitate the Maillard reaction between quinoa protein (QP) and dextran (DX), systematically examining the effects of various pressures on the conjugate's physicochemical properties. Fourier transform infrared spectroscopy confirmed the formation of QP-DX conjugates, characterized by a new peak at 1149 cm (covalent CN bond). Secondary and tertiary structure analyses revealed that HPM-assisted Maillard reaction partially unfolded QP molecules, enhancing conformational flexibility and interfacial properties.
View Article and Find Full Text PDFFood Res Int
November 2025
Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea National University of Science and Technology, Daejeon 34113, Republic of Korea. Electronic address:
Turmeric (Curcuma longa) exhibits anti-obesity properties, yet its low water solubility limits bioavailability. In this study, a water-dispersible turmeric rhizome extract (WDTE) was developed using nano-dispersion technology with maltodextrin as a wall material and characterized by UPLC-QTOF-MS, dynamic light scattering, and zeta potential analysis. The WDTE contained 10 identified metabolites, including five diarylheptanoids such as curcumin, demethoxycurcumin, and bisdemethoxycurcumin, with curcumin quantified at 7.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Shenyang Pharmaceutical University, 103 Wenhua Road Shenhe District, Shenyang, 110016, Liaoning, People's Republic of China.
A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.
View Article and Find Full Text PDF