Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During autophagy the enzyme Atg3 catalyzes the covalent conjugation of LC3 to the amino group of phosphatidylethanolamine (PE) lipids, which is one of the key steps in autophagosome formation. Here, we have demonstrated that an N-terminal conserved region of human Atg3 (hAtg3) communicates information from the N-terminal membrane curvature-sensitive amphipathic helix (AH), which presumably targets the enzyme to the tip of phagophore, to the C-terminally located catalytic core for LC3-PE conjugation. Mutations in the putative communication region greatly reduce or abolish the ability of hAtg3 to catalyze this conjugation in vitro and in vivo, and alter the membrane-bound conformation of the wild-type protein, as reported by NMR. Collectively, our results demonstrate that the N-terminal conserved region of hAtg3 works in concert with its geometry-selective AH to promote LC3-PE conjugation only on the target membrane, and substantiate the concept that highly curved membranes drive spatial regulation of the autophagosome biogenesis during autophagy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809043PMC
http://dx.doi.org/10.1038/s41467-020-20607-0DOI Listing

Publication Analysis

Top Keywords

n-terminal conserved
12
conserved region
12
region human
8
human atg3
8
lc3-pe conjugation
8
n-terminal
4
region
4
atg3 couples
4
couples membrane
4
membrane curvature
4

Similar Publications

Role of CPEBs in Learning and Memory.

J Neurochem

September 2025

Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.

Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding.

View Article and Find Full Text PDF

Splicing factor Nova regulates the splice variants in exons 3 and 6 of GABA receptor subunit RDL from Chilo suppressalis Walker (Lepidoptera: Crambidae).

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity, College of Plant Protection, Nanjing Agricultural University, Nanjing 211800, PR China. Electronic address:

The insect ionotropic γ-aminobutyric acid (GABA) receptor is an important insecticide target, and alternative splicing (AS) among exons 3a, 3b, 6a, and 6b of its RDL subunit is ubiquitous in insects; however, the AS factors and mechanisms remain unclear. While the neuro-oncological ventral antigen (Nova) is known to regulate AS of the γ2 subunit of mammalian GABA receptors, its role in insects remains unexplored. Two CsNova isoforms, CsNova-X1 and CsNova-X3, were identified by BLAST in the third-generation transcriptome of Chilo suppressalis.

View Article and Find Full Text PDF

A conserved PIWI silencing complex detects piRNA-target engagement.

Mol Cell

September 2025

Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA. Electronic address:

In animal germ cells, PIWI proteins use piRNAs to detect active selfish genetic elements. Base-pairing to a piRNA defines transposon recognition, but how this interaction triggers a defensive response remains unclear. Here, we identify a transposon recognition complex composed of the silkworm proteins Siwi, GTSF1, and Maelstrom.

View Article and Find Full Text PDF

In most animals, oocyte polarity establishes the embryonic body plan by asymmetrically localizing axis-determining transcripts. These transcripts first localize in and zebrafish oocytes to the Balbiani body (Bb), a large membrane-less organelle conserved from insects to humans. The Bb is transient, disassembling and anchoring at one pole the axis-determining transcripts that establish the vegetal pole of the oocyte.

View Article and Find Full Text PDF

The LIM domain protein LIMD1 is a critical regulator of the Hippo signaling pathway, acting to sequester the kinases LATS1/2 to adherens junctions (AJs) in response to mechanical strain. Here, we identify the molecular basis for LIMD1 binding and recruitment of LATS1/2 to AJs. We show that while the LIM domains of LIMD1 are sufficient for AJ localization and binding to LATS1/2, recruitment of LATS1 to AJ requires both the intrinsically disordered region (IDR) in the N-terminus as well as the LIM domains.

View Article and Find Full Text PDF