98%
921
2 minutes
20
Supported bimetallic nanoparticles used for various chemical transformations appear to be more appealing than their monometallic counterparts, because of their unique properties mainly originating from the synergistic effects between the two different metals. Exsolution, a relatively new preparation method for supported nanoparticles, has earned increasing attention for bimetallic systems in the past decade, not only due to the high stability of the resulting nanoparticles but also for the potential to control key particle properties (size, composition, structure, morphology, etc.). In this review, we summarize the trends and advances on exsolution of bimetallic systems and provide prospects for future studies in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248339 | PMC |
http://dx.doi.org/10.1002/chem.202004950 | DOI Listing |
ACS Omega
September 2025
College of Materials and Chemical Engineering, Anhui Province Key Laboratory of Conservation and Utilization for Dabie Mountain Special Bio-Resources, West Anhui University, Lu'an, Anhui 237012, P. R. China.
Photo-Fenton oxidation, as a promising wastewater treatment technology, suffers from double barriers: the sluggish Fenton catalytic rate of transition metal ions and inefficient visible light absorption, both of which severely constrain the performance enhancement of catalytic systems. Therefore, accelerating electron transfer processes and broadening optical absorption spectra have become critical scientific challenges for practical implementation. Herein, a composite catalyst system based on Au-Ag-Cu trimetallic species codoped on hydroxyapatite (HAp) was reported via an ion/ligand impregnation method.
View Article and Find Full Text PDFJ Colloid Interface Sci
August 2025
State Key Laboratory of Green Biomanufacturing, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.; Ordos Laboratory, Inner
Currently, electrocatalytic conversion of carbon dioxide into higher-value compounds is a promising approach. However, developing a stable and efficient catalyst with high selectivity for specific products remains a major challenge. Herein, we constructed a bismuth-based metal-organic framework (Bi-MOF) as a catalyst for the catalytic production of formic acid from carbon dioxide, to which different ratios of tin metal elements were doped.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China. Electronic address:
Polymer dielectrics have attracted substantial attention for their extensive applications in advanced electronic power systems. However, their practical implementation is substantially hindered by the drastic deterioration in breakdown strength and energy storage capabilities at elevated temperatures. Herein, corrugated alumina (AlO) nanosheets anchored with uniformly dispersed silver nanoparticles (AgNPs) are fabricated via a sequential bimetallic ion exchange method using polyimide (PI) film as the sacrificing template.
View Article and Find Full Text PDFTalanta
September 2025
Department of Physical and Environmental Sciences, University of Toronto, Scarborough, Toronto, Ontario, M1C 1A4, Canada. Electronic address:
An one-pot method was used to prepare bimetallic nanozymes, with chitosan (CS) and l-tyrosine (L-Tyr) as stabilized dispersed colloidal solutions and a carrier for gold-platinum single atoms (Au-Pt SAs), which exhibited excellent peroxidase activity. A colorimetric method based on CS/L-Tyr/Au-Pt SAs nanozymes was constructed for the colorimetric detection of quercetin (QR) in human serum and orange juice. The synthesized bimetallic nanozymes were characterized by SEM, TEM, HAADF-STEM, FT-IR, XRD and XPS techniques to demonstrate the successful synthesis of CS/L-Tyr/Au-Pt SAs nanozymes.
View Article and Find Full Text PDFInorg Chem
September 2025
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
The electrochemical reduction of CO into valuable C products presents a sustainable and efficient strategy for the utilization of CO and long-term renewable energy storage. Yet, enhancing the efficiency of the electrocatalytic CO reduction reaction (eCORR) in aqueous systems remains challenging due to the difficulty in activating both CO and HO molecules. In this study, we focus on water activation generating reactive hydrogen species (*H) to boost C product selectivity.
View Article and Find Full Text PDF